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Abstract

A large number of choices exist when designing a reliable memory system. The
choices range from simple replication to complex error control codes (ECC). Simple
replication (without ECC) has a better performance as compared to systems using
ECC, as ECC necessitate decoding, deteriorating the performance. Clearly, simple
replication improves performance at the cost of increased redundancy. An intermediate
solution is to use combination of replication and simple ECC. Similar approach has
been used in some commercial systems [1].

This report compares reliability of memory systems formed using simple triplication
(without ECC) with memory systems formed by duplicating memory modules that use
ECC. Reliability of a system using duplication of memory modules, with codes capable
of only error detection or codes only capable of single error correction, is shown to
be worse than simple triplication. It is also shown that systems using duplication
of memory modules, with codes capable of single error correction and double error

detection can achieve better reliability than simple triplication.



1 Introduction

A large number of choices exist when designing a reliable memory system. The choices range
from simple replication to complex error control codes (ECC). Simple replication (without
ECC) has a better performance as compared to systems using ECC, as ECC necessitate
decoding, deteriorating the performance. Clearly, simple replication improves performance
at the cost of increased redundancy. An intermediate solution is to use combination of

replication and simple ECC. Such schemes have been used in commercial systems [1].

This report compares reliability of memory systems formed by simple triplication
(without ECC) with memory systems formed by duplicating memory modules that use
ECC. Following the standard terminology, these two systems are referred to as triplez and

duplex systems, respectively. Figure 1 illustrates the two systems under consideration.

The triplex system in Figure 1(a) is formed by simple triplication of memory modules
that do not use any error control coding. The memory system output is obtained by bit-wise

voting on the output of the three modules in the triplex system.
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Figure 1: Triplex and Duplex Memory System Models

The duplex system in Figure 1(b) consists of two identical memory modules. Each
memory module uses an (n, k) error control code. Encoded outputs of the two modules are
available to a voter that can decode the outputs of the two memory modules. The exact

function of the voter in duplex systems will be defined more precisely in the next section.

The objective here is to determine the minimum capability required in the ECC

such that the duplex system can achieve a higher reliability than the triplex system. The



capability of an ECC is defined here by the number of errors it can correct and detect. A ;-
error correcting-d; error detecting code is said to be less capable than a ty-error correcting-ds
error detecting code if (i) {1 < #5 or (ii) {1 = t3 and d; < d3. The work presented in this

report is motivated by our previous work on modular redundant system reliability and safety

[4].

In this report, reliability of the triplex system is compared with duplex systems that

use error control codes (ECC) of different capabilities:

e Error detection only.

e Single error correction (and no error detection, i.e. more than one error is assumed to

result in erroneous decoding.).
e Single error correction and double error detection.

In the following, reliability of the triplex system is evaluated first, followed by evalu-

ation of reliability of the three duplex systems and comparison with the triplex system.

For the reliability analysis, we use the independent symmetric error model [3]. It is
assumed that each bit of a codeword in memory may become erroneous independently with
probability p. In reality, probability p is expected to be quite small (of the order of 1073 or

less). Reliability of the voters is assumed to 1.

Fach data word contains k& bits. The ECC used in the duplex scheme is an (n, k)

code for some n > k. The number of words in the memory system is denoted by W.

Definition 1 Reliability Rs of a memory system S is defined as the probability that all

words in the memory can be accessed correctly.

Reliability of Triplex System

A data word contains k bits, therefore, the probability that a given word in the memory can

be accessed correctly is
k
s = |(1 =) +3p(1 = p)*] = (1= p)*" (1 +2p)" (1)
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Therefore, reliability of the triplex system is given by Riipier = (R )W. Recall that

triplex

W is the total number of words in memory system (i.e., each memory module contains W

words).

2 Reliability of Duplex Systems

This section evaluates reliability of three different types of duplex systems and compares

them with the triplex system.

2.1 Duplex system using error detecting codes

In this section we show that the reliability achieved by a duplex system, using an ECC for
error detection only, is always less than a triplex system. The triplex system uses three
replicas of each word, requiring 3k bits per word. The duplex system requires 2n bits per
word. For a fair comparison, we consider only those (n, k) error control codes for which

2n < 3k or n < 3k/2.

Let the reliability of the duplex system under consideration here be denoted by
Raupies1. Each memory module in the duplex system uses an (n, k) error detecting code
with n < 3k/2. Let P, denote the probability that an undetected error occurs in a code-
word of this code. The function of the voter in this system is as follows: When a word is to
be read from the memory, the corresponding codewords from the two memory modules are
provided as input to the voter. The voter decodes the two codewords to detect errors. If
errors are detected in both codewords, then the voter does not produce any data. If exactly
one word is detected to contain an error, then the other decoded codeword is produced as
output. If neither codeword is detected to contain an error, then any one decoded codeword
is produced as the output. This voter will maximize the reliability under the constraint

that each codeword is to be used only for error detection (no error correction). With such

a voter, the reliability is given by Rauptest = (Rjypica1)” » Where

sk n n n 1 n
ptert = (L=p)" +2(1 =P, —(1—p)") (1 —p) +52(1=p)" P,



= 2-P)1-p)" = (1—p™ (2)

In the first expression above, the term (1 — p)*" is the probability that both codewords
are error-free. The term 2(1 — P, — (1 — p)") (1 — p)" is the probability that one of the
codewords contains a detectable error and the other codeword is error-free. The term % 2(1—
p)" P, corresponds to the probability that one of the codewords contains an undetectable
error, the other codeword is error-free and the voter chooses the error-free codeword. Note

that in this situation, the voter output will be erroneous with probability %

The theorem below states that triplex memory reliability is larger than that of a

duplex system using ECC for error detection only.

Theorem 1 Given 0 < p < 1/2 and n < 3k/2, Rjupies1 ts always smaller than Riipier

independent of the error detecting code used in the duplex system.

Proof: The proof is somewhat complex and is presented in Appendix A.1. a

2.2 Duplex systems using single error correcting (SEC) codes

In this section, we assume that the error control code used in the duplex system can correct
a single error and not detect any other errors. In other words, it is assumed that more than
one error will result in incorrect decoding of this code. In the next section, we will consider

a single error correcting and double error detecting code.

For the duplex system considered here, the voter function is as follows: The voter
decodes the two codewords and corrects any errors that may be detected. Then, it outputs
any one of the decoded codewords. This voter will maximize the reliability under the con-
straint that each codeword can be used only to correct a single error and that more than

one error in a codeword causes erroneous decoding.

Let the reliability of the duplex system being considered in this section be denoted by
Riupiesz- A given word can be accessed correctly when the two codewords contain at most

one error each. In the case where one of the codewords has at most one error and the other



codeword contains more than one error, there is a 50% chance that the correct information
will be obtained (recollect that multiple errors in a codeword are not detected). When both
codewords contain more than one error, correct information cannot be obtained. Therefore,

Rdupler = ( guplexZ)W Where
ZupleacQ = ((1 - p)n + np(l - p)n_1)2 +
1 _ n n—
+520(1L=p)" +np(1 =p)"") (1= (1 =p)" —np(1 =p)"™")

= (1—p)" +np(l—p"!

The above expression is identical to the reliability that would be obtained if just one memory
module with a single error correcting code were used (instead of two). This implies that
when the error control code is only capable of correcting a single error, it does not help to use
more than one memory module. Therefore, for this system, we impose a weaker constraint

on n that n < 3k, instead of n < 3k/2.

Theorem 2 Given 0 < p < 1/3 and n < 3k, Raupier2 s always smaller than Riipier

independent of the single error correcting code used in the duplex system.

Proof: The proof is presented in Appendix A.2. a

Although the result stated above is proved for 0 < p < 1/3, we conjecture that it
holds true when 0 < p < 1/2. In practice, p is much smaller that 1/3, therefore, the above

result is adequate for real applications.

2.3 Duplex systems using SEC-DED codes

This section shows that a duplex system using a single error correcting and double error
detecting (SEC-DED) code can achieve reliability better than a triplex system. This is

demonstrated with the help of examples.

Assume that the voter for duplex system using SEC-DED code functions as follows:

It decodes the codeword from one of the memory modules and if zero or one error is detected



in this codeword, the decoded codeword is produced as the output. If two errors are detected
in this codeword, then the second codeword is decoded. In this case, the second decoded

codeword is produced as output if it is detected to contain at most one error.

Let the reliability of the duplex system being considered here be denoted by Rjypicss-

Then, Ryypress = (Rfluplm?))w where,
:luplex?) = (1 - p)n + np(l - p)n_l

+ (Z) P =p)" " (1 =p)" +np(1 —p)" ™)

Unlike the results presented in Theorems 1 and 2, in this case, the duplex system
can achieve a better reliability that the triplex system. We illustrate this with an example.
Assume that the error control code used in the duplex system is a (n, k) code obtained by
(possibly) shortening the distance-4 extended Hamming code [3]. For k& = 16 and k = 32,
Figures 2 and 3 plot the wunreliability (i.e. 1—reliability) for duplex and triplex systems
as a function of p. For the SEC-DED code, n is equal to 22 when £ = 16 and 39 when
k = 32. From the unreliability plots, it can be seen that for sufficiently small values of p the
reliability of the duplex system is larger than that of the triplex system.

For Ryupiess to be larger than Ry, p needs to be small enough. For example, in
case of k = 32, p must be smaller than 9.05 x 107> There are two aspects to this issue: (a)
In practice, given realistic failure rates, the value of p is likely to be small enough to meet
this bound. (b) Secondly, the duplex system with SEC-DED code uses much fewer bits than
3k. It should be easy to construct a single error correcting-triple error detecting code with
n much less than 3%/2. The duplex system using this code would achieve reliability higher
than the triplex system for values of p larger than those for the SEC-DED code.

Observe that for small p the slope of the unreliability curves is very large. This
implies that, for a given value of p, the difference between the unreliabilities of duplex and

triplex systems is significant (even though the curves are very close to each other).

The objective here was to demonstrate that a duplex system with a SEC-DED code
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Figure 2: Comparison of R}, .5 and R} for k =16 and n = 22

triplex

can achieve reliability higher than the triplex system. We have shown this to be true provided
the error probability p is small enough.

3 Summary

This report compares reliability of memory systems formed using simple triplication (with-
out ECC) with memory systems formed by duplicating memory modules that use ECC.
Reliability of a system using duplication of memory modules is shown to be always worse
than simple triplication if the ECC used in the duplex system is capable of only error de-

tection or only single error correction. It is also shown that if the ECC is capable of single
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Figure 3: Comparison of R}, .5 and R} for k = 32 and n = 39

triplex

error correction as well as double error detection, then the duplex system achieves higher

reliability than the triplex system for small values of p.

From the results presented in this report it can be concluded that for the duplex
system to be able to achieve higher reliability than the triplex system the ECC must at least
be capable of single error correction and double error detection.

Acknowledgements

The author thanks Prasad Padmanabhan for helping with the proof of Lemma 1 in
the appendix.



A Appendix

A.1 Proof of Theorem 1

To be able to prove the theorem, we first prove the following lemma.

Lemma 1 (1 —p)*™(1 +2p)* + (1 — p)" > 2 provided 0 < p < 1/2, n >3 and k+1 <
n < 3k/2.

Proof: Assume that 0 <p <1/2,n >3 and k+ 1 <n <3k/2. Let function g(k,n,p) =
(L=p)* (1 +2p)* + (1 —p)". Then,

dg _ (1—p)*(1+2p)
Ik (1—=p)"

In[(1 —p)*(1 + 2p)].
As 0 < p < 1/2,0 < (1 —p)*(1 +2p) < 1, and it follows that % < 0. Thus, ¢g is a

monotonically decreasing function of k. Therefore, we will choose the largest possible value
of k,i.e., k =n—1, and show that ¢ is larger than 2 for this value of k. When £k =n —1, we
have g(n —1,n,p) = (1—p)"7*(1+2p)" "' +(1—p)" = [(1=p)(1+2p)]"*(1+2p) + (1 —p)".
Let function f(n,p) = g(n —1,n,p). Thus, our goal now is to prove that f(n,p) > 2. Now,

of _

g, = (1- p)" (14 2p)" " In[(1 = p)(1 4 2p)] + (1 — p)*In(1 — p).

To find the extrema of f, we set % = 0. This implies that, at the extrema (i.e. minima or
maxima),

In(1 — p)
In[(1 = p)(1 +2p)]

This equation can hold for only one real value of n. Thus, there exists only one extrema of

(142p)" " = —(1 —p)?

f with respect to n. Looking at f(n,p) it is clear that by increasing n, f(n,p) can be made
arbitrarily large.! Therefore, the above extrema must be a minima. Let the minima occur
at n = n*. Two cases can occur: (a) n* > 3 and (b) n* < 3. We consider the two cases

separately.

LObserve that, for 0 < p < 1/2, (1 — p)(1+2p) = 1 +p(1 — 2p) > 1.

9



Case (a) n* >3 : In this case, we have

In(1 —p)
In[(1 = p)(1 + 2p)]

(1+2p)" 7 = ~(1-p)* (3)
and f(n,p) > f(n*,p). Our goal now is to prove that f(n*,p) > 2. From Equation 3, we
get

In[(1 —p)(1 + 2p)]
In(l—p)

(L=p)" == —p" 2L+ 29"
Substituting this expression into f(n*,p), we get

pr In[(1 = p)(1 + 2p)]

fmp) = (1=p)" (L4 2p)" 7 = (1= p)"" (1 +2p) (1 — p)

o g In(1+2p
(=1 g gy L2

—In(l —p)
= [0 2 )
> (1+ 2p)%, because n* > 3 and (1 —p)(1 +2p) > 1 for 0 < p < 1/2

Define function h(p) = (1+2p) In(1+2p)+2In(1—p). h(p) > 0 implies that (1+2p) 2L >

= In(1-p)
2 which in turn (by the above inequality) implies that f(n*, p) > 2. Therefore, our goal now
is to prove that h(p) > 0.

Note that 2(0) = 0 and A(1/2) = 0. Also function h is differentiable in [0,1/2].

Therefore, by Rolle’s theorem [2], at least one extrema (maxima or minima) exists between

2
p=0and p=1/2. Now, % =2+ 2In(1 4+ 2p) —2/(1 —p) and ZZTQ = ﬁ — (1_2p)2. Note
that for p = 0, % =0 and ZZ)TQ > 0. Thus, A has a minima p = 0 and at least one maxima

in [0,1/2] (by Rolle’s theorem). Let the maxima occur at ppaz. AS P = Puas 18 @ maxima,

d?h

. d2h - . . . . .
oz must be negative at pq4z- o7 Is a decreasing function of p, therefore, it will remain

negative for p > pyqa.. This implies that in the interval (piaz, 1/2), no minima exists. This
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in turn implies that between 0 and 1/2, there exists only one maxima and no minima. As
h(0) = h(1/2) = 0, it implies that h(p) > 0 for 0 < p < 1/2. This implies that f(n*,p) > 2.

Now,

2 < f(n*,p) < f(n.p) < g(k,n,p).

Therefore, g(k,n,p) = (1= p)*7"(1 4 2p)" + (1 = p)" > 2.

Case (b) n* <3 : Observe that the range of interest for parameter n is n > 3. If n* is no
larger than 3, then in the range of interest, function f(n,p) will be minimized at n = 3, i.e.

f(n,p) > f(3,p). Therefore, our goal in this case is to prove that f(3,p) > 2. Now,

fBp) = (1=p)A+2p)*+(1—p)
= 243p" —5p° = 24 p*(3 - 5p)

> 2 because 0 < p < 1/2.

This implies that f(n,p) > 2. As f(n,p) < g(k,n,p), we have g(k,n,p) = (1 — p)?**="(1 +
2p)% + (1 —p)" > 2. O

Theorem 1 can be proved now. If n = k, then it is clear that all errors in a codeword
will be undetected. In other words, P, in Equation 2 is 1 — (1 — p)”. It can easily seen

that, in this case, Ry ipler > Raupies1- Now we assume that n > k41 or k <n —1. Also, to
ensure that the duplex system does not use more bits than the triplex system, we impose
the constraint that 2n < 3k (equivalently, & > 2n/3 or n < 3k/2). When k = 1, n must
be at least 2, and this case contradicts the condition 3k < 2n. Therefore, in the following,
we assume k > 2 which in turn implies that n > 3. To summarize, we have n > 3, k > 2,
k+1<n<3k/2and 0 < p < 1/2. Under these conditions, the result proved in Lemma 1

is applicable. Therefore, we have

(L=p)* "1 +2p)" + (1 —=p)" > 2
= (1—p)(1+2p)" + (1 —-p)* > 2(1—p)

= (1 - p)%(l + 2p)k +(1—=p)* > (2—P)(1—p)", because P, >0

11



= (1—p*1+2p)* > 2-P)1—-p)" —(1—p™
= R > R

triplex

by Equations 1 and 2

*
duplexl

= Rtripleac > Rduplexl

A.2 Proof of Theorem 2

The number of checkbits in the (n, k) code is r = n — k. It is not possible to design a single
error correcting code with just one checkbit. Therefore r > 2. Also, it is not possible to
design a single error correcting code for £ > 1 with r = 2. When k = 1, the triplex system
essentially implements a single error correcting code using a total of 3 bits. Therefore Ryypies2

with £ =1 and r = 2 is identical to R¢ripres with & = 1.

For & <4, r may be equal to 3. For £ > 4, r must be at least 4 for any single error
correcting code. We consider the case of r > 4 first followed by r = 3.

Case 1: r >4, 0<p< 1/3: To prove the theorem, we first derive three inequalities.

(1—p)f(1+2p) = [1+p(1—2p)*
= Z: f)pi(l—Zp)Z
= (1=p)"(1+2p)" > 14 kp(1—2p) (4)

I = (p+(1—p)) wherer=n—k
= é(Z)pi(l—p)M
=1 > (1—=p) +rp(l—p) "t asr>4 (5)

When 0 < p < 1/3, 1 —2p > (1 —p)3. Also, (1 —p)®> > (1 — p)' for + > 4. Therefore, for
r >4,
1—2p>(1—pyL.

12



This implies that

kp(1 —2p) > kp(1 —p)" (6)

By replacing the two terms on right hand side of Equation 4 by right hand sides of Equa-

tions 5 and 6, respectively, we get

(1=p*(1+2p)" > (1 —=p) +rp(l —p)" "+ kp(1 — p)""

= (1 _p)k(l ‘|‘2p)k > —p)" +np(l—p)~ ' asn=k+r

Multiplying both sides by (1 — p)* and replacing n = k + r, we get

(1=p)*(1+2p)" > (1—p)" +np(l—p)""
= R > R

*
triplex duplex2

= Rtripleac > Rdupler

Case 2: r =3, 0<p<1/3: Asdiscussed earlier, r = 3 implies that & can at most be
4. If k =1, then n = k +r = 4, which is larger than 3k = 3. Therefore, we consider only
k= 2,3,4. We consider each value of k separately. Note that

gupleacQ o (1 - p)n + np(l - p)n—l (1 B p)T + np(l - p)T_l

?Tiplex B (1 - p)2k(1 —I' 2p)k N (1 — p)k(l —|— Qp)k

(i) r =3, k=2: In this case,n =5 and

eruplexZ _ (1 — p)B + 5p(1 _p)2 — 1+ 4p <
:;Mplex (1 _p)2(1+2p)2 1 +4p+4p2

Therefore, R}, ... < R

triplex*
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(i) r =3, k=3 : In this case, n = 6. By following similar steps as above, we get

gupleacQ _ 1 + 5]3 _ 1 + 5p
Riptea (L=p)(1+2p)*  (1=p)(1+6p+12p* +8p?)
14 5p 1+ 5p

L+ 5p+6p> —4p® —8p* 1+ 5p+2p*(3 —2p — 4p?)

< 1, because 3 —2p —4p* > 0 when 0 < p < 1/3.

Therefore, R}, .0 < R

triplex”

(iii) r =3, k=4 : In this case, n = 7. By following similar steps as above, we get

Rgupler _ 1 + 6p _ 1 + 6p
?Tiplex (1 - p)2(1 —I_ 2}7)4 1 —I' 6}? ‘I’ 9}?2 - 8}?3 - 24}74 —|— 16p6

1 +6p
L+ 6p+ p2(9 —8p — 24p?) 4 16p°

< 1, because 9 — 8p — 24p* > 0 when 0 < p < 1/3.
Therefore, R}, .0 < R

triplex”

Thus, in case 2, Rprera < B This implies that Rgupicsz < Reripies-

triplex”
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