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AbstractA large number of choices exist when designing a reliable memory system. Thechoices range from simple replication to complex error control codes (ECC). Simplereplication (without ECC) has a better performance as compared to systems usingECC, as ECC necessitate decoding, deteriorating the performance. Clearly, simplereplication improves performance at the cost of increased redundancy. An intermediatesolution is to use combination of replication and simple ECC. Similar approach hasbeen used in some commercial systems [1].This report compares reliability of memory systems formed using simple triplication(without ECC) with memory systems formed by duplicating memory modules that useECC. Reliability of a system using duplication of memory modules, with codes capableof only error detection or codes only capable of single error correction, is shown tobe worse than simple triplication. It is also shown that systems using duplicationof memory modules, with codes capable of single error correction and double errordetection can achieve better reliability than simple triplication.



1 IntroductionA large number of choices exist when designing a reliable memory system. The choices rangefrom simple replication to complex error control codes (ECC). Simple replication (withoutECC) has a better performance as compared to systems using ECC, as ECC necessitatedecoding, deteriorating the performance. Clearly, simple replication improves performanceat the cost of increased redundancy. An intermediate solution is to use combination ofreplication and simple ECC. Such schemes have been used in commercial systems [1].This report compares reliability of memory systems formed by simple triplication(without ECC) with memory systems formed by duplicating memory modules that useECC. Following the standard terminology, these two systems are referred to as triplex andduplex systems, respectively. Figure 1 illustrates the two systems under consideration.The triplex system in Figure 1(a) is formed by simple triplication of memory modulesthat do not use any error control coding. The memory system output is obtained by bit-wisevoting on the output of the three modules in the triplex system.
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(a) triplex system (b) duplex systemFigure 1: Triplex and Duplex Memory System ModelsThe duplex system in Figure 1(b) consists of two identical memory modules. Eachmemory module uses an (n; k) error control code. Encoded outputs of the two modules areavailable to a voter that can decode the outputs of the two memory modules. The exactfunction of the voter in duplex systems will be de�ned more precisely in the next section.The objective here is to determine the minimum capability required in the ECCsuch that the duplex system can achieve a higher reliability than the triplex system. The1



capability of an ECC is de�ned here by the number of errors it can correct and detect. A t1-error correcting-d1 error detecting code is said to be less capable than a t2-error correcting-d2error detecting code if (i) t1 < t2 or (ii) t1 = t2 and d1 < d2. The work presented in thisreport is motivated by our previous work on modular redundant system reliability and safety[4]. In this report, reliability of the triplex system is compared with duplex systems thatuse error control codes (ECC) of di�erent capabilities:� Error detection only.� Single error correction (and no error detection, i.e. more than one error is assumed toresult in erroneous decoding.).� Single error correction and double error detection.In the following, reliability of the triplex system is evaluated �rst, followed by evalu-ation of reliability of the three duplex systems and comparison with the triplex system.For the reliability analysis, we use the independent symmetric error model [3]. It isassumed that each bit of a codeword in memory may become erroneous independently withprobability p. In reality, probability p is expected to be quite small (of the order of 10�3 orless). Reliability of the voters is assumed to 1.Each data word contains k bits. The ECC used in the duplex scheme is an (n; k)code for some n � k. The number of words in the memory system is denoted by W .De�nition 1 Reliability RS of a memory system S is de�ned as the probability that allwords in the memory can be accessed correctly.Reliability of Triplex SystemA data word contains k bits, therefore, the probability that a given word in the memory canbe accessed correctly isR�triplex = h(1� p)3 + 3p(1 � p)2ik = (1� p)2k(1 + 2p)k (1)2



Therefore, reliability of the triplex system is given by Rtriplex = (R�triplex)W . Recall thatW is the total number of words in memory system (i.e., each memory module contains Wwords).2 Reliability of Duplex SystemsThis section evaluates reliability of three di�erent types of duplex systems and comparesthem with the triplex system.2.1 Duplex system using error detecting codesIn this section we show that the reliability achieved by a duplex system, using an ECC forerror detection only, is always less than a triplex system. The triplex system uses threereplicas of each word, requiring 3k bits per word. The duplex system requires 2n bits perword. For a fair comparison, we consider only those (n; k) error control codes for which2n � 3k or n � 3k=2.Let the reliability of the duplex system under consideration here be denoted byRduplex1. Each memory module in the duplex system uses an (n; k) error detecting codewith n � 3k=2. Let Pu denote the probability that an undetected error occurs in a code-word of this code. The function of the voter in this system is as follows: When a word is tobe read from the memory, the corresponding codewords from the two memory modules areprovided as input to the voter. The voter decodes the two codewords to detect errors. Iferrors are detected in both codewords, then the voter does not produce any data. If exactlyone word is detected to contain an error, then the other decoded codeword is produced asoutput. If neither codeword is detected to contain an error, then any one decoded codewordis produced as the output. This voter will maximize the reliability under the constraintthat each codeword is to be used only for error detection (no error correction). With sucha voter, the reliability is given by Rduplex1 = (R�duplex1)W , whereR�duplex1 = (1� p)2n + 2 (1 � Pu � (1 � p)n) (1� p)n + 12 2(1 � p)nPu3



= (2� Pu)(1� p)n � (1� p)2n (2)In the �rst expression above, the term (1 � p)2n is the probability that both codewordsare error-free. The term 2 (1� Pu � (1� p)n) (1 � p)n is the probability that one of thecodewords contains a detectable error and the other codeword is error-free. The term 12 2(1�p)nPu corresponds to the probability that one of the codewords contains an undetectableerror, the other codeword is error-free and the voter chooses the error-free codeword. Notethat in this situation, the voter output will be erroneous with probability 12 .The theorem below states that triplex memory reliability is larger than that of aduplex system using ECC for error detection only.Theorem 1 Given 0 < p < 1=2 and n � 3k=2, Rduplex1 is always smaller than Rtriplexindependent of the error detecting code used in the duplex system.Proof: The proof is somewhat complex and is presented in Appendix A.1. 22.2 Duplex systems using single error correcting (SEC) codesIn this section, we assume that the error control code used in the duplex system can correcta single error and not detect any other errors. In other words, it is assumed that more thanone error will result in incorrect decoding of this code. In the next section, we will considera single error correcting and double error detecting code.For the duplex system considered here, the voter function is as follows: The voterdecodes the two codewords and corrects any errors that may be detected. Then, it outputsany one of the decoded codewords. This voter will maximize the reliability under the con-straint that each codeword can be used only to correct a single error and that more thanone error in a codeword causes erroneous decoding.Let the reliability of the duplex system being considered in this section be denoted byRduplex2. A given word can be accessed correctly when the two codewords contain at mostone error each. In the case where one of the codewords has at most one error and the other4



codeword contains more than one error, there is a 50% chance that the correct informationwill be obtained (recollect that multiple errors in a codeword are not detected). When bothcodewords contain more than one error, correct information cannot be obtained. Therefore,Rduplex2 = (R�duplex2)W whereR�duplex2 = ((1 � p)n + np(1 � p)n�1)2 ++ 12 2((1 � p)n + np(1 � p)n�1) (1� (1� p)n � np(1 � p)n�1)= (1 � p)n + np(1 � p)n�1The above expression is identical to the reliability that would be obtained if just one memorymodule with a single error correcting code were used (instead of two). This implies thatwhen the error control code is only capable of correcting a single error, it does not help to usemore than one memory module. Therefore, for this system, we impose a weaker constrainton n that n � 3k, instead of n � 3k=2.Theorem 2 Given 0 < p < 1=3 and n � 3k, Rduplex2 is always smaller than Rtriplexindependent of the single error correcting code used in the duplex system.Proof: The proof is presented in Appendix A.2. 2Although the result stated above is proved for 0 < p < 1=3, we conjecture that itholds true when 0 < p < 1=2. In practice, p is much smaller that 1=3, therefore, the aboveresult is adequate for real applications.2.3 Duplex systems using SEC-DED codesThis section shows that a duplex system using a single error correcting and double errordetecting (SEC-DED) code can achieve reliability better than a triplex system. This isdemonstrated with the help of examples.Assume that the voter for duplex system using SEC-DED code functions as follows:It decodes the codeword from one of the memorymodules and if zero or one error is detected5



in this codeword, the decoded codeword is produced as the output. If two errors are detectedin this codeword, then the second codeword is decoded. In this case, the second decodedcodeword is produced as output if it is detected to contain at most one error.Let the reliability of the duplex system being considered here be denoted by Rduplex3.Then, Rduplex3 = (R�duplex3)W where,R�duplex3 = (1� p)n + np(1 � p)n�1+ n2!p2(1� p)n�2 �(1 � p)n + np(1 � p)n�1�Unlike the results presented in Theorems 1 and 2, in this case, the duplex systemcan achieve a better reliability that the triplex system. We illustrate this with an example.Assume that the error control code used in the duplex system is a (n; k) code obtained by(possibly) shortening the distance-4 extended Hamming code [3]. For k = 16 and k = 32,Figures 2 and 3 plot the unreliability (i.e. 1�reliability) for duplex and triplex systemsas a function of p. For the SEC-DED code, n is equal to 22 when k = 16 and 39 whenk = 32. From the unreliability plots, it can be seen that for su�ciently small values of p thereliability of the duplex system is larger than that of the triplex system.For Rduplex3 to be larger than Rtriplex p needs to be small enough. For example, incase of k = 32, p must be smaller than 9:05� 10�3. There are two aspects to this issue: (a)In practice, given realistic failure rates, the value of p is likely to be small enough to meetthis bound. (b) Secondly, the duplex system with SEC-DED code uses much fewer bits than3k. It should be easy to construct a single error correcting-triple error detecting code withn much less than 3k=2. The duplex system using this code would achieve reliability higherthan the triplex system for values of p larger than those for the SEC-DED code.Observe that for small p the slope of the unreliability curves is very large. Thisimplies that, for a given value of p, the di�erence between the unreliabilities of duplex andtriplex systems is signi�cant (even though the curves are very close to each other).The objective here was to demonstrate that a duplex system with a SEC-DED code6
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Figure 2: Comparison of R�duplex3 and R�triplex for k = 16 and n = 22can achieve reliability higher than the triplex system. We have shown this to be true providedthe error probability p is small enough.3 SummaryThis report compares reliability of memory systems formed using simple triplication (with-out ECC) with memory systems formed by duplicating memory modules that use ECC.Reliability of a system using duplication of memory modules is shown to be always worsethan simple triplication if the ECC used in the duplex system is capable of only error de-tection or only single error correction. It is also shown that if the ECC is capable of single7
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Figure 3: Comparison of R�duplex3 and R�triplex for k = 32 and n = 39error correction as well as double error detection, then the duplex system achieves higherreliability than the triplex system for small values of p.From the results presented in this report it can be concluded that for the duplexsystem to be able to achieve higher reliability than the triplex system the ECC must at leastbe capable of single error correction and double error detection.AcknowledgementsThe author thanks Prasad Padmanabhan for helping with the proof of Lemma 1 inthe appendix. 8



A AppendixA.1 Proof of Theorem 1To be able to prove the theorem, we �rst prove the following lemma.Lemma 1 (1 � p)2k�n(1 + 2p)k + (1 � p)n > 2 provided 0 < p < 1=2, n � 3 and k + 1 �n � 3k=2.Proof: Assume that 0 < p < 1=2, n � 3 and k + 1 � n � 3k=2. Let function g(k; n; p) =(1� p)2k�n(1 + 2p)k + (1 � p)n. Then,@g@k = (1 � p)2k(1 + 2p)k(1 � p)n ln[(1� p)2(1 + 2p)]:As 0 < p < 1=2, 0 < (1 � p)2(1 + 2p) < 1, and it follows that @g@k < 0. Thus, g is amonotonically decreasing function of k. Therefore, we will choose the largest possible valueof k, i.e., k = n�1, and show that g is larger than 2 for this value of k. When k = n�1, wehave g(n�1; n; p) = (1�p)n�2(1+2p)n�1+(1�p)n = [(1�p)(1+2p)]n�2(1+2p)+(1�p)n .Let function f(n; p) = g(n� 1; n; p). Thus, our goal now is to prove that f(n; p) > 2. Now,@f@n = (1� p)n�2(1 + 2p)n�1 ln[(1� p)(1 + 2p)] + (1� p)n ln(1 � p):To �nd the extrema of f , we set @f@n = 0. This implies that, at the extrema (i.e. minima ormaxima), (1 + 2p)n�1 = �(1� p)2 ln(1� p)ln[(1� p)(1 + 2p)] :This equation can hold for only one real value of n. Thus, there exists only one extrema off with respect to n. Looking at f(n; p) it is clear that by increasing n, f(n; p) can be madearbitrarily large.1 Therefore, the above extrema must be a minima. Let the minima occurat n = n�. Two cases can occur: (a) n� > 3 and (b) n� � 3. We consider the two casesseparately.1Observe that, for 0 < p < 1=2, (1� p)(1 + 2p) = 1 + p(1� 2p) > 1.9



Case (a) n� > 3 : In this case, we have(1 + 2p)n��1 = �(1� p)2 ln(1 � p)ln[(1� p)(1 + 2p)] (3)and f(n; p) � f(n�; p). Our goal now is to prove that f(n�; p) > 2. From Equation 3, weget (1 � p)n� = �(1� p)n��2(1 + 2p)n��1 ln[(1� p)(1 + 2p)]ln(1� p) :Substituting this expression into f(n�; p), we getf(n�; p) = (1 � p)n��2(1 + 2p)n��1 � (1 � p)n��2(1 + 2p)n��1 ln[(1� p)(1 + 2p)]ln(1 � p)= (1 � p)n��2(1 + 2p)n��1 ln(1 + 2p)� ln(1 � p)= [(1� p)(1 + 2p)]n��2(1 + 2p) ln(1 + 2p)� ln(1� p)> (1 + 2p) ln(1 + 2p)� ln(1 � p) ; because n� > 3 and (1 � p)(1 + 2p) > 1 for 0 < p < 1=2De�ne function h(p) = (1+2p) ln(1+2p)+2 ln(1�p). h(p) > 0 implies that (1+2p) ln(1+2p)� ln(1�p) >2 which in turn (by the above inequality) implies that f(n�; p) > 2. Therefore, our goal nowis to prove that h(p) > 0.Note that h(0) = 0 and h(1=2) = 0. Also function h is di�erentiable in [0; 1=2].Therefore, by Rolle's theorem [2], at least one extrema (maxima or minima) exists betweenp = 0 and p = 1=2. Now, dhdp = 2 + 2 ln(1 + 2p) � 2=(1 � p) and d2hdp2 = 41+2p � 2(1�p)2 . Notethat for p = 0, dhdp = 0 and d2hdp2 > 0. Thus, h has a minima p = 0 and at least one maximain [0,1/2] (by Rolle's theorem). Let the maxima occur at pmax. As p = pmax is a maxima,d2hdp2 must be negative at pmax. d2hdp2 is a decreasing function of p, therefore, it will remainnegative for p > pmax. This implies that in the interval (pmax; 1=2), no minima exists. This10



in turn implies that between 0 and 1/2, there exists only one maxima and no minima. Ash(0) = h(1=2) = 0, it implies that h(p) > 0 for 0 < p < 1=2. This implies that f(n�; p) > 2.Now, 2 < f(n�; p) � f(n; p) � g(k; n; p):Therefore, g(k; n; p) = (1 � p)2k�n(1 + 2p)k + (1� p)n > 2.Case (b) n� � 3 : Observe that the range of interest for parameter n is n � 3. If n� is nolarger than 3, then in the range of interest, function f(n; p) will be minimized at n = 3, i.e.f(n; p) � f(3; p). Therefore, our goal in this case is to prove that f(3; p) > 2. Now,f(3; p) = (1 � p)(1 + 2p)2 + (1� p)3= 2 + 3p2 � 5p3 = 2 + p2(3 � 5p)> 2 because 0 < p < 1=2.This implies that f(n; p) > 2. As f(n; p) � g(k; n; p), we have g(k; n; p) = (1 � p)2k�n(1 +2p)k + (1 � p)n > 2. 2Theorem 1 can be proved now. If n = k, then it is clear that all errors in a codewordwill be undetected. In other words, Pu in Equation 2 is 1 � (1 � p)n. It can easily seenthat, in this case, Rtriplex > Rduplex1. Now we assume that n � k + 1 or k � n� 1. Also, toensure that the duplex system does not use more bits than the triplex system, we imposethe constraint that 2n � 3k (equivalently, k � 2n=3 or n � 3k=2). When k = 1, n mustbe at least 2, and this case contradicts the condition 3k � 2n. Therefore, in the following,we assume k � 2 which in turn implies that n � 3. To summarize, we have n � 3, k � 2,k + 1 � n � 3k=2 and 0 < p < 1=2. Under these conditions, the result proved in Lemma 1is applicable. Therefore, we have(1 � p)2k�n(1 + 2p)k + (1 � p)n > 2) (1 � p)2k(1 + 2p)k + (1� p)2n > 2(1� p)n) (1 � p)2k(1 + 2p)k + (1� p)2n > (2� Pu)(1� p)n; because Pu � 011



) (1 � p)2k(1 + 2p)k > (2� Pu)(1� p)n � (1� p)2n) R�triplex > R�duplex1 by Equations 1 and 2) Rtriplex > Rduplex1A.2 Proof of Theorem 2The number of checkbits in the (n; k) code is r = n� k. It is not possible to design a singleerror correcting code with just one checkbit. Therefore r � 2. Also, it is not possible todesign a single error correcting code for k > 1 with r = 2. When k = 1, the triplex systemessentially implements a single error correcting code using a total of 3 bits. ThereforeRduplex2with k = 1 and r = 2 is identical to Rtriplex with k = 1.For k � 4, r may be equal to 3. For k > 4, r must be at least 4 for any single errorcorrecting code. We consider the case of r � 4 �rst followed by r = 3.Case 1: r � 4, 0 < p < 1=3 : To prove the theorem, we �rst derive three inequalities.(1� p)k(1 + 2p)k = [1 + p(1 � 2p)]k= kXi=0  ki!pi(1� 2p)i) (1� p)k(1 + 2p)k � 1 + kp(1 � 2p) (4)1 = (p + (1� p))r where r = n� k= rXi=0 ri!pi(1� p)r�i) 1 > (1 � p)r + rp(1 � p)r�1 as r � 4 (5)When 0 < p < 1=3, 1 � 2p > (1 � p)3. Also, (1 � p)3 > (1 � p)i for i � 4. Therefore, forr � 4, 1� 2p > (1� p)r�1:12



This implies that kp(1 � 2p) > kp(1 � p)r�1 (6)By replacing the two terms on right hand side of Equation 4 by right hand sides of Equa-tions 5 and 6, respectively, we get(1 � p)k(1 + 2p)k > (1� p)r + rp(1 � p)r�1 + kp(1 � p)r�1) (1� p)k(1 + 2p)k > (1 � p)r + np(1 � p)r�1 as n = k + rMultiplying both sides by (1� p)k and replacing n = k + r, we get(1� p)2k(1 + 2p)k > (1� p)n + np(1 � p)n�1) R�triplex > R�duplex2) Rtriplex > Rduplex2Case 2: r = 3, 0 < p < 1=3 : As discussed earlier, r = 3 implies that k can at most be4. If k = 1, then n = k + r = 4, which is larger than 3k = 3. Therefore, we consider onlyk = 2; 3; 4. We consider each value of k separately. Note thatR�duplex2R�triplex = (1� p)n + np(1 � p)n�1(1� p)2k(1 + 2p)k = (1� p)r + np(1 � p)r�1(1� p)k(1 + 2p)k(i) r = 3, k = 2 : In this case, n = 5 andR�duplex2R�triplex = (1� p)3 + 5p(1 � p)2(1� p)2(1 + 2p)2 = 1 + 4p1 + 4p + 4p2 < 1:Therefore, R�duplex2 < R�triplex. 13



(ii) r = 3, k = 3 : In this case, n = 6. By following similar steps as above, we getR�duplex2R�triplex = 1 + 5p(1� p)(1 + 2p)3 = 1 + 5p(1 � p)(1 + 6p + 12p2 + 8p3)= 1 + 5p1 + 5p + 6p2 � 4p3 � 8p4 = 1 + 5p1 + 5p + 2p2(3� 2p � 4p2)< 1; because 3 � 2p � 4p2 > 0 when 0 < p < 1=3.Therefore, R�duplex2 < R�triplex.(iii) r = 3, k = 4 : In this case, n = 7. By following similar steps as above, we getR�duplex2R�triplex = 1 + 6p(1� p)2(1 + 2p)4 = 1 + 6p1 + 6p+ 9p2 � 8p3 � 24p4 + 16p6= 1 + 6p1 + 6p + p2(9 � 8p � 24p2) + 16p6< 1; because 9 � 8p � 24p2 > 0 when 0 < p < 1=3.Therefore, R�duplex2 < R�triplex.Thus, in case 2, R�duplex2 < R�triplex. This implies that Rduplex2 < Rtriplex.References[1] P. A. Bernstein, \Sequoia: A fault-tolerant tightly coupled multiprocessor for transactionprocessing," Computer, pp. 37{45, February 1988.[2] W. E. Boyce and R. C. DiPrima, Calculus. John Wiley & Sons, Inc., 1988.[3] T. R. N. Rao and E. Fujiwara, Error-Control Coding for Computer Systems. Prentice-Hall, 1989.[4] N. H. Vaidya and D. K. Pradhan, \Fault-tolerant design strategies for high reliabilityand safety," IEEE Trans. Computers, vol. 42, pp. 1195{1206, October 1993.14


