
Distributed Recovery Units: An Approach for Hybridand Adaptive Distributed RecoveryNitin H. VaidyaDepartment of Computer ScienceTexas A&M UniversityCollege Station, TX 77843-3112E-mail: vaidya@cs.tamu.eduTechnical Report 93-052November 1993
AbstractTraditionally, distributed recovery schemes have been designed for systems consistingof multiple recovery units. Each recovery unit (RU) resides on a single processor andit can fail and recover as a whole. This report introduces the \distributed recoveryunit (DRU)" abstraction as an approach for design of \hybrid" and \adaptive" recoveryschemes for distributed systems. The distributed system is viewed as a collection ofDRUs, each DRU consisting of one or more RUs. This report presents a new recoveryscheme based on the DRU abstraction. The proposed approach combines coordinatedcheckpointing with independent checkpointing and optimistic message logging to obtaina recovery scheme that can e�ectively trade the overhead during failure-free operationwith the overhead during recovery.

1 IntroductionA distributed system is a collection of processes that communicate by sending messages. Anumber of failure recovery schemes have been designed to provide fault tolerance in distributedsystems. Most of these recovery schemes can be divided into two categories: (a) coordinatedcheckpointing [1, 7, 14] and (b) message logging and independent checkpointing [5, 6, 12].Coordinated checkpointing schemes require the distributed system to periodically record aconsistent state on the stable storage. When a failure occurs, the system rolls back to the mostrecently recorded consistent state. Message logging schemes require the system to record (onstable storage) the messages sent and/or received during execution. This record of messagesis used to recreate a consistent state whenever a failure occurs.Recovery schemes proposed in the literature typically assume that the system consistsof a number of recovery units. Each recovery unit can fail and recover as a whole. Eachrecovery unit is often simply a process or a single machine. Many recovery schemes oftenassume that each recovery unit is deterministic. The typical underlying assumption is thatthe recovery unit resides on a single processor [12]. This report presents a new approach thatextends the concept of a recovery unit to a distributed environment and shows utility of thenew approach in designing new recovery schemes.For brevity, we use the term \process" to mean \recovery unit". The main contributionsof this report are as follows:� The report introduces the \distributed recovery unit (DRU)" abstraction as an approachfor design of \hybrid" and \adaptive" recovery schemes for distributed systems. Thedistributed system is viewed as a collection of DRUs, each DRU consisting of one ormore processes. (Section 2.3 motivates the proposed approach and Section 5 comparesit with other relevant approaches.)� A new distributed recovery scheme is presented based on the DRU abstraction (Sec-tion 3). The proposed scheme combines coordinated checkpointing with independentcheckpointing and optimistic message logging. This recovery scheme facilitates a trade-1

o� between the amount of information logged on the stable storage and the overhead inperforming recovery.� The proposed DRU abstraction is shown to facilitate design of adaptive recovery schemesby allowing membership of the DRUs to change dynamically (Section 4). This capabil-ity is useful in automatically \�ne-tuning" the recovery scheme if requirements of anapplication change over time.The research presented here is related to previous work by Sistla and Welch [11], Lowryet al. [8] and Johnson [4]. Section 5 presents a comparison of the past work with the researchpresented here.Note that the work presented here generalizes an approach presented in [13]. The proofof correctness of the algorithms presented in this report has been omitted here. An extendedversion of this technical report is expected to be available in the near future.2 Distributed Recovery UnitsA distributed recovery unit (DRU) is simply a collection of processes (possibly on di�erentprocessors).1 The distributed system consists of a collection of DRUs. In the extreme, eachprocess may form a DRU by itself or all the processes may belong to the same DRU. Thereare many ways one may partition the system into DRUs. The actual approach used dependson the application requirements. Here are two possibilities:� Processes may be assigned to DRUs such that the frequency of messages sent betweenprocesses in two di�erent DRUs is small, while the frequency of messages sent betweenprocesses in the same DRU is large. When the message communication patterns changeover time, a mechanism for dynamically changing the DRU membership can be used.� Processes executing on some predetermined set of processors may form a DRU. When aprocess migrates from a processor in one set to another (for example, due to dynamic loadbalancing), the DRU memberships must be updated to re
ect the new con�guration.1Recall that we use the term \process" in lieu of the term \recovery unit".2

While it is not always necessary, for the recovery schemes presented in this report, itis convenient to have a DRU-leader for each DRU. In this report, we assume that a specialprocess is created exclusively to perform the DRU-leader function for each DRU. Alternately,the function of a DRU-leader can be performed by one of the user processes in the DRU, or theDRU-leader functionality can be distributed to all processes within a DRU [13]. The choicemade for implementing DRU-leader function a�ects the recovery scheme.In this section, we present (i) a simple application of the DRU abstraction, (ii) thegeneral approach for design of recovery schemes based on the DRU abstraction, and (iii) themotivation for the proposed approach.2.1 A Simple ExampleThe simple example in this section leads to the design of a recovery scheme identical to thepartitioning approach proposed by Sistla and Welch [11].Consider a system consisting of multiple processes illustrated in Figure 1(a). Therecovery scheme for this system requires that (i) each process takes a checkpoint just beforesending a message to another process, and (ii) each process logs a received message beforeusing it. This systems can recover from a failure without the domino-e�ect [9].
DRU 1

DRU 2

DRU 3

(b)(a)

denotes a processFigure 1: Application of DRU abstraction: A simple example3

Now consider a system consisting of multiple DRUs illustrated in Figure 1(b). Therecovery scheme for this system requires that (i) any message from a process in one DRUto a process in another DRU is not delivered until the sender DRU has taken a \logical"checkpoint, and (ii) any message received from a process in another DRU is logged before itis used. A logical checkpoint consists of a collection of states of the processes such that it canbe guaranteed that, in spite of future failures, the state of a process will never roll back to anearlier state (or, this state can always be recreated if necessary). Such a state of a process issaid to be recoverable. A message sent by a process while in a recoverable state is committable.Thus, above recovery scheme requires that a message from one DRU to another DRU is notdelivered unless it is committable.This scheme is identical to the partitioning approach proposed by Sistla and Welch[11] for large distributed system. However, our approach di�ers from [11] in that the DRUabstraction also facilitates design of recovery schemes that do not require messages betweenDRUs to be committable before they are delivered.Observe that the system in Figure 1(b) can be obtained by starting with the systemin Figure 1(a) and \replacing" a process in Figure 1(a) by a distributed recovery unit (DRU).To put it di�erently, a DRU in Figure 1(b) behaves analogous to a process in Figure 1(a).This example illustrates the basic idea behind the distributed recovery unit approach. Therecovery schemes presented later fully exploit the advantages o�ered by the DRU abstraction.2.2 The General ApproachThe DRU abstraction is used here to design \hybrid" recovery schemes. The general approachmay be divided into three steps.Step 1: Choose two recovery schemes for distributed recovery { a local recovery scheme anda global recovery scheme. The local recovery scheme is primarily useful in recovering the stateof a single distributed recovery unit, and the global recovery scheme is useful in recovering thestate of the entire system. In the example above, the chosen global recovery scheme requireseach DRU to take a \logical" checkpoint before sending a message to another DRU. The choice4

of local recovery scheme in that example is arbitrary.Step 2: Modify the local and global recovery schemes (if necessary) to allow the two schemesto co-exist in the same system. Modi�cations become necessary whenever the local recoveryscheme (without modi�cation) is inadequate to allow a DRU to emulate the behavior of aprocess as expected by the global recovery scheme.Step 3: This step is optional depending on whether the membership of processes to theDRUs changes dynamically or not. If the membership of the DRUs changes over time, thelocal and global recovery schemes may need further modi�cations. Additionally, protocolsmust be designed to facilitate DRU membership changes.The modi�cations required in the local and global recovery schemes may or may notbe minor depending on the choice of the two schemes. The example in the previous sectiondoes not require any modi�cations to the local and global recovery schemes, while the newrecovery schemes presented in this report require some simple modi�cations.2.3 MotivationIn the literature, a large number of distributed recovery schemes have been proposed (e.g.[2, 5, 6, 12]). None of the recovery schemes have been shown to be suitable for all applications.There are three parameters that may be used to evaluate the performance of a recovery scheme:1. Overhead during normal (failure-free) operation.2. Overhead during recovery after failure.3. Delay in committing an output to the environment.It is not possible to optimize all the above parameters simultaneously, and improvement inone parameter often results in degradation in another parameter. Therefore, no one (static)recovery scheme can be useful for all applications.The report uses the distributed recovery units as a tool to design \hybrid" recoveryschemes. The hybrid approach allows us to combine two recovery schemes and obtain advan-tages of both the schemes by choosing appropriate DRU sizes.5

� Choosing small 2 DRUs results in performance comparable to the global scheme.� Choosing large DRUs results in performance comparable to the local scheme.� Intermediate DRU sizes result in \interpolation" between the local and globalschemes.In general, some DRUs may be small and some large.The hybrid recovery approach based on DRUs can be made \adaptive" by dynamicallychanging membership of processes to the DRUs. An adaptive recovery scheme can automati-cally \�ne-tune" or adapt as an application's requirements change with time. For example, ifat some time the local recovery scheme becomes more desirable then the DRU membershipscan be dynamically changed to make each DRU large. The distributed recovery unit abstrac-tion provides a mechanism to introduce adaptive behavior into the recovery schemes. To beable to adapt successfully, however, it is necessary to develop appropriate decision-makingmechanisms (e.g. heuristics). Such heuristics have been developed and are a subject of cur-rent research [13]. It should be noted that recently Goldberg et al. [3] have also advocatedthe use of adaptive fault tolerance mechanisms.To illustrate the general approach outlined above, we �rst present a recovery schemeassuming that the membership of processes to the DRUs does not change over time (Sec-tion 3). This recovery scheme is said to be static as the DRU membership is �xed. Next, weallow the DRU membership to change dynamically, and present the dynamic recovery scheme(Section 4).3 A Static Recovery SchemeThe system model is as follows. The system consists of many processes communicating witheach other via message passing. Each process is assumed to be deterministic, i.e., the �nalstate of a process depends only on its initial state and on the content and order of messages itreceives. Each process is assumed to be fail-stop [10]. The communication channels used formessage passing are assumed to be reliable and �rst-in-�rst-out (FIFO).2A small DRU contains few processes and a large DRU contains a large number of processes.6

Step 1 of the general procedure outlined earlier requires us to choose local and globalrecovery schemes. We choose the local recovery scheme to be the coordinated checkpointingscheme by Chandy and Lamport [1] and the global recovery scheme to be an optimisticmessagelogging scheme by Johnson and Zwaenepoel [5]. The optimistic logging scheme by Strom andYemini [12] is also an excellent choice for the global recovery scheme. Our goal here is todemonstrate the utility of our approach in designing new and useful recovery schemes. Wehave chosen the scheme from [5] as an example for its ease of understanding.The basic idea here is to implement a DRU using a (modi�ed) coordinated check-pointing scheme such that each DRU would behave analogous to a deterministic process, asexpected by the chosen global recovery scheme. The processes within di�erent DRUs takecheckpoints independently, as in the chosen global recovery scheme. However, the processeswithin a given DRU record their state in a consistent manner as governed by the chosen localrecovery scheme. All messages in the system are treated \optimistically" (i.e. messages neednot be committable before they are delivered).Coordinated checkpointing schemes, in general, require a smaller stable storage ascompared to message logging schemes. However, message logging schemes typically requirea smaller re-execution overhead during recovery as compared to coordinated checkpointingschemes (with comparable failure-free overhead). Similarly, message logging schemes can alsoachieve smaller output-commit time with comparable failure-free overhead. By combiningthese two approaches, the proposed recovery scheme facilitates a trade-o� between stablestorage size, re-execution overhead during recovery and output commit delays.As noted in step 2 in Section 2.2, the local and global recovery schemes need to bemodi�ed to allow them to co-exist. The following describes the static recovery scheme afterthe modi�cations are made. To begin with, we present some de�nitions and describe somedata structures. 7

3.1 PreliminariesThe execution of each process can be divided into non-overlapping intervals. Each interval,called a state interval is initiated by the receipt of a message. Each state interval of a processcan be identi�ed by a unique state interval index [5], which is incremented by one each timea message is received by the process.Each message is tagged by its send sequence number (SSN), the sender process identi�er(sender-id), and identi�er of the DRU (DRU-id) to which the sender process belongs. Sendsequence number (SSN) of a message denotes the position of the message in the stream ofmessages sent by its sender process.A message that is sent by a process in one DRU to a process in another DRU is said to bean inter-DRUmessage; any other message is said to be an intra-DRUmessage. When a processreceives a message it can determine that the message is an inter-DRU (intra-DRU) messageif its own DRU-id mismatches (matches) with the DRU-id tagged to the message. The solidand dotted arrows in Figure 1(b) denote inter-DRU and intra-DRU massages, respectively.When DRU membership can change dynamically (Section 4), the DRU of each processmay change over time. In this case, each process remembers DRU-id of each DRU it has beenin. If a message is tagged with any of these DRU-id's, it is treated as an intra-DRU message.(Actually it is su�cient to remember identi�ers of the DRUs the process has recently been in.)For future reference, we de�ne an obsolete state interval. A state interval � (or stateduring that interval) of a process is said to be obsolete if the state of the process is rolledback to a state interval prior to � and state interval � is not guaranteed to be reproducedsubsequently. If state interval �P of a process P depends on an obsolete state interval �Q ofprocess Q, then �P is also obsolete.3.2 Data StructuresEach user process maintains the following data structures. The DRU-leader needs to maintainfewer data structures (listed later). 8

� A DRU-id, which is the unique identi�er of the DRU containing the process.� A DRU-leader identi�er, to enable a process to communicate with its DRU-leader.It is assumed that it is adequate to know the identi�er of a process to be able to commu-nicate with it. When this is not true, physical location of the process may be includedin each process identi�er.� A checkpoint number (CN), numbering each checkpoint taken by the process. Eachmessage is tagged with the current checkpoint number (CN) of the sender process. (Forthe dynamic recovery scheme in Section 4, CN would denote the number of checkpointsthe process has taken in its current DRU.)� A state interval index, which counts the number of messages received by the process.The state interval index is incremented each time the process receives a message. Eachmessage is tagged with the current state interval index of the sender process.� A dependency vector [5] which records the largest index of any state interval of eachother process on which this process directly depends.� An order information bu�er (in volatile memory) for intra-DRU messages received bythe process. For each intra-DRU message, the order information includes identi�er ofthe sender process, the SSN (send sequence number), sender's state interval index taggedto the message, and index of the state interval started by this message. Note that theorder information does not include the message data. The order information is loggedby writing this bu�er to stable storage.� A message bu�er (in volatile memory) for inter-DRU messages received by the process.For each inter-DRU message, the message data and its order information are recordedin the message bu�er. The messages are logged by writing this bu�er to stable storage.The DRU-leader maintains DRU-id and checkpoint number (CN) de�ned above, and aDRU-set, containing identi�ers of all processes in its DRU.9

The distributed recovery scheme consists of two parts: (a) failure-free operation and(b) failure recovery protocol. The following describes each of them.3.3 Failure-free operationCheckpointing: The procedure for checkpointing is based on the chosen local recoveryscheme, namely, the coordinated checkpointing scheme by Chandy amd Lamport [1]. Whena DRU-leader wants to initiate a checkpoint, it increments its own checkpoint number (CN),takes a checkpoint and sends a marker message to each process in its DRU. A DRU-leadermay decide to initiate a checkpoint at the request of a process in its DRU or based on someheuristic. For simplicity, it is assumed that the DRU-leader does not initiate a checkpointunless all processes in its DRU have taken the previous checkpoint. (The DRU-leader canverify this condition by looking at the stable storage.)When a process receives an intra-DRU message (marker message or otherwise) taggedby a checkpoint number larger than its own, the receiver process, before acting on the message,sets its own checkpoint number equal to that tagged with the message and takes a checkpoint.When a process receives a marker message tagged by a checkpoint number no larger than itsown, it ignores the marker message.A checkpoint of a process is considered tentative until all processes in its DRU havetaken a corresponding checkpoint. A checkpoint of a process includes the state interval indexduring which the checkpoint is taken, as well as the dependency vector of the process atthe time of checkpointing. A checkpoint of a DRU-leader includes all the data structures itmaintains, namely, DRU-set, DRU-id and the checkpoint number (CN).Messages: Whenever a new message is received, the DRU-id tagged to the message is com-pared with the DRU-id of the receiver process to determine if the message is an inter-DRUmessage or an intra-DRU message. An inter-DRU message is saved in the message bu�er ofthe receiving process. When an intra-DRU message is received, its order information is savedin the order information bu�er. Message bu�er and order information bu�er are written to10

the stable storage periodically or when they get full.Dependency vector update: On receiving each new message, the entry for the senderprocess in the dependency vector of the receiving process is set equal to the larger of itscurrent value and the state interval index tagged to the message.In addition to above, the dependency vector needs to be updated to add what we call\pseudo-dependencies" corresponding to each checkpoint taken by the process. However, theseupdates need not be performed during the checkpointing operation. These updates can beperformed periodically or when a failure occurs. We describe the pseudo-dependency updatesin Section 3.4.3.4 Failure RecoveryIn the event that a DRU-leader fails, its state is restored from its most recent checkpoint. Ifthere are any additional failures, then procedure described below is invoked.For correctness of the recovery procedure described below, we need to modify thedependency vectors as follows to add \pseudo-dependencies". Consider a DRU, say DRU1,whose processes have taken checkpoint number CN1. Let processes P and Q have takencheckpoint CN1 during state intervals �P and �Q, respectively. Then, update dependencyvector of checkpoint CN1 of process P (i.e. dependency vector of �P) to re
ect that stateinterval �P depends on state interval �Q of process Q. This in turn implies that each stateinterval of process P following �P also depends on �Q of Q. Therefore, these implied updatesare also made to the dependency vectors. These updates are performed for each process pairin each DRU (for each checkpoint). In practice, these update may also be performed duringnormal operation. However, some of the updates may not be completed when a failure occurs,and the incomplete updates will have to be performed after the failure by looking at thecheckpoints on the stable storage.The consequence of the above update to the dependency vector is that if process Pabove rolls back to a state interval prior to �P , then Q must also roll back to a state interval11

prior to �Q. In other words, if checkpoint CN1 of process P is obsolete, then checkpoint CN1of each process in its DRU (including process Q) is also obsolete.To be able to recover from failures, it is necessary to �rst determine a recoverablesystem state. Johnson and Zwaenepoel [5] have presented algorithm FIND REC to determinethe \maximum recoverable system state" provided a list of \stable" state intervals is available.We use algorithm FIND REC as well, except that the de�nition of \stable" state intervals in [5]needs to be modi�ed to suit our implementation using DRUs. To de�ne stable state intervals,we �rst need to de�ne an e�ective checkpoint [5].De�nition 1 The e�ective checkpoint for a state interval � of some process P is the checkpointon stable storage for process P with the largest state interval index � such that � � � [5].Assuming the above meaning of �, we present a de�nition of stable state intervals. Thede�nition is recursive due to condition 2 below.De�nition 2 A state interval � of process P is stable i� for � < � � � following is true:1. If the message that started state interval � is an inter-DRU message then it has beenlogged.2. If the message that started state interval � is an intra-DRU message then: (a) its orderinformation has been logged, and (b) the state interval of the sender process when thismessage was sent is stable.State interval 0 of each process is always stable. Each other state interval is initiallymarked not stable. These state intervals subsequently become stable. The above de�nitionsuggests recursive algorithm is stable in Figure 2 to determine which state intervals arestable. When a failure (single or multiple) is detected, the following steps are performed se-quentially to recover from the failure: 12

is stable (�, P)fif state interval � of process P is marked as stablereturn TRUEif process P took a checkpoint during interval �mark � as stable and return (TRUE)if (is stable(� � 1, P) = FALSE)return (FALSE)if � is initiated by an inter-DRU message Mif (message M is not logged on the stable storage)return FALSEelse mark � as stable and return (TRUE)else if � is initiated by an intra-DRU message M from process Qif order information for M is not loggedreturn FALSEelse if is stable(
, Q), where
 is the state interval of process Q when M is sentmark � as stable and return (TRUE)else return FALSEg Figure 2: Recursive procedure for determining stable state intervals
13

1. DRU-leader of each fault-free DRU (i.e. a DRU that does not contain a faulty process)takes a coordinated checkpoint of that DRU.2. All tentative checkpoints are deleted. A checkpoint CN1 of process P is tentative if allprocesses in its DRU have not taken checkpoint CN1.3. Dependency vectors are updated as described earlier to add the pseudo-dependencies.4. Procedure is stable in Figure 2 is used to determine which state intervals are stable.Subsequently, algorithm FIND REC from [5] is performed at the stable storage to deter-mine the maximum recoverable system state. For each process, algorithm FIND RECdetermines the state interval of that process that is a part of the maximum recoverablesystem state. For process P, let �(P) denote the state interval of process P that belongsto the maximum recoverable system state. Also, let C(P) denote the e�ective checkpointof state interval �(P) of process P.5. Due to the pseudo-dependencies, C(P) must be identical for all processes P in a givenDRU. To prove this, assume the contrary. Consider processes P and Q in a particularDRU. Let C(P) 6= C(Q). Without loss of generality assume that C(P) < C(Q). Letstate intervals of P and Q when checkpoint number C(P) of the DRU was taken be �C(P)Pand �C(P)Q . Similarly, let state intervals of P and Q when checkpoint number C(Q) wastaken be �C(Q)P and �C(Q)Q . As �(P) and �(Q) are a part of the maximum recoverablestate, �C(P)P and �C(Q)Q must also be recoverable. By the pseudo-dependency updateprocedure, �C(Q)Q depends on �C(Q)P and vice-versa. Also, �C(Q)P > �(P) � �C(P)P .3 As�C(Q)P is not a part of the recoverable state, �C(Q)Q cannot be recoverable. This contradictsa previous statement. Therefore, this proves that C(P) = C(Q).As the e�ective checkpoint (above) for all processes within a DRU is the same, letC(DRU) denote the e�ective checkpoint for all processes in a given DRU.3If �C(Q)P = �C(P)P , then it implies that P took checkpoints C(P) and C(Q) during the same state interval.In this case, we can pick C(P) = C(Q) without resulting in an inconsistency.14

6. For each DRU, the DRU-leader is restored to its state at checkpoint C(DRU).7. The state of all processes in a DRU can be recovered independent of other DRUs. There-fore, we consider any one DRU, say DRU1. Each process in DRU1 is rolled back tocheckpoint number C(DRU1) and reexecuted. For process P to be able to reach state�(P), it must re-receive all the messages it had received previously since checkpointC(DRU1). In addition, the order in which messages were received must also be thesame.The inter-DRU messages received by each process are obtained from the message log onthe stable storage. Only order information for the intra-DRU messages is available in thestable storage. However, the intra-DRU messages will be reproduced as the processesin DRU1 execute from checkpoint C(DRU1). This is guaranteed by the de�nition of astable state interval. (Note: A recoverable state interval is always stable.) The orderinformation for the intra-DRU messages is used to decide the order in which they aredelivered when reproduced during recovery.Recovery is completed when each process P reaches state interval �(P).Any failures occurring during recovery can be handled by initiating the recovery again.3.5 Garbage CollectionA checkpoint of process P can be deleted when a subsequent checkpoint becomes the e�ectivecheckpoint for the state interval of process P in a recoverable state. Any messages or orderinformation logged prior to a deleted checkpoint can also be deleted.4 A Dynamic Recovery SchemeThe recovery scheme presented above assumes that the membership of processes to DRUsis statically decided. However, it is possible to adapt the recovery scheme to time-varyingneeds of an application if the membership of the processes to DRUs can change over time.15

This section presents DRU-fork and DRU-merge protocols for allowing DRUs to partition andmerge, as well as the checkpointing and recovery procedures.The DRU-leader initiates each of the DRU-fork, DRU-merge and checkpointing pro-cedures described below. The DRU-leader initiates these procedures in a mutually exclusivemanner. That is, the DRU-leader does not initiate any of these procedures while any one ofthem is in progress. Additionally, none of these procedures are initiated while recovery is inprogress. These restrictions can be relaxed at the cost of a more complex recovery procedure.4.1 Additional Data StructuresFor the dynamic recovery scheme, new data structures are needed in addition to those pre-sented earlier in Section 3.2. The following additional data structures are maintained by eachprocess.� A version-number. The version number is initialized to one. It may sometimes beincremented during a DRU-fork or DRU-merge operation. Note that the version-numberis di�erent from incarnation numbers used in many algorithms [12].� A DRU-id-list, containing DRU identi�ers of all DRUs that this process has been in.(As time progresses, it is possible to delete older entries in the DRU-id-list. We omitthe algorithm here.)Version-number and DRU-id-list are both saved with the process checkpoint.� Temporary variable to be used during the DRU-fork and DRU-merge protocols. Thesevariables are introduced below as and when needed.4.2 Maintaining Unique DRU Identi�ersWhen DRU membership can change dynamically, it is necessary to design a protocol formaintaining unique DRU identi�ers. Many di�erent mechanisms can be used for maintainingunique DRU identi�ers. This section presents one such mechanism and [13] presents another.16

Identi�ers of the processes are assumed to form a linear order. Given this assumption, identi�erof a DRU is given by a tuple (proc-id , vers-num) where proc-id is the largest identi�er of anyprocess in that DRU and vers-num is the version-number of that process. Because DRUscan merge and fork, the DRU identi�ers are subject to change. The DRU-fork and DRU-merge protocols are designed to appropriately update DRU identi�ers when DRUmembershipschange.4.3 DRU-merge ProtocolDRU-merge protocol is used to merge two di�erent DRUs into one DRU. The protocol requiresactive participation of the DRU-leaders of the merging DRUs. We assume that based on somedecision-making mechanism (e.g. heuristics) the two DRU-leaders have decided to merge thetwo DRUs.The DRU-leaders �rst determine the DRU-id of the merged DRU. If the DRU-id's forthe two DRUs are DRU1 = (pid1, version1) and DRU2 = (pid2, version2) then the followingprocedure is used to determine the new DRU-id = (pid, version).If (pid1 > pid2)pid = pid1version = 1 + version1new-DRU-leader <-- leader of DRU1else pid = pid2version = 1 + version2new-DRU-leader <-- leader of DRU2The above procedure also determines which DRU's leader will become the DRU-leaderfor the merged DRU. The new-DRU-leader then determines membership of the merged DRUby asking the other DRU-leader for its DRU-set. The other DRU-leader terminates itself afterperforming these steps. 17

Next, the new-DRU-leader sends new-dru-id (pid, version, new-DRU-leader) messagesto all processes in their respective DRUs. When a process receives a new-dru-id (pid, version,new-DRU-leader) message, it (a) updates its next-DRU-id to equal (pid, version), (b) if itsprocess identi�er is pid then it increments its own version number, (c) updates its next-DRU-leader to equal new-DRU-leader, (d) sends a ack-new-dru-id message back to next-DRU-leader,and (e) adds the new DRU-id to the DRU-id-list. Until the new-DRU-leader has received ack-new-dru-id messages from all the processes in the new DRU, the new-DRU-leader cannotinitiate a checkpoint for its DRU. When all the ack-new-dru-id messages have been received,the new-DRU-leader for the merged DRU can initiate a coordinated checkpoint of the mergedDRU. The merged DRU is considered to have come into existence starting from this checkpoint.The checkpointing procedure described later is used to checkpoint the new DRU.4.4 DRU-fork ProtocolADRU-leader may decide using some decision-making mechanism (e.g. heuristics) to partitionthe DRU into two DRUs. First, the DRU-leader determines the DRU-ids for the two partitions(partitions 1 and 2) using the following procedure.pid1 = largest of the process identifiers in partition 1.version1 = 1 + version number of process pid1.DRU-id for partition 1 will be (pid1, version1).pid2 = largest of the process identifiers in partition 2.version2 = 1 + version number of process pid2.DRU-id for partition 2 will be (pid2, version2).The DRU-leader spawns two DRU-leaders, one for each DRU to be formed by the DRU-fork protocol. Let their identi�ers be leader1 and leader2, respectively. The DRU-leadersends leader1 and leader2 messages containing their respective DRU-sets and DRU-ids. Thenew leaders initialize their checkpoint number (CN) to 0. The DRU-leader then sends new-dru-id(pid1, version1, leader1) message to all processes in partition 1 and new-dru-id(pid2,18

version2, leader2) message to all processes in partition 2, and then terminates itself. Whena process receives a new-dru-id (pid, version, new-DRU-leader) message, it (a) updates itsnext-DRU-id to equal (pid, version), (b) if its process identi�er is pid then it increments itsown version number, (c) updates its next-DRU-leader to equal new-DRU-leader, (d) sends aack-new-dru-id message back to next-DRU-leader, and (e) adds the new DRU-id to the DRU-id-list. Until a new-DRU-leader (i.e. leader1 or leader2) has received ack-new-dru-id messagesfrom all the processes in its DRU, it cannot initiate a checkpoint. When all ack-new-dru-idmessages have been received, the new-DRU-leader for a forked DRU can initiate a coordinatedcheckpoint of its DRU. A new DRU (i.e. partition 1 or 2) is considered to have come intoexistence starting from this checkpoint. The checkpointing procedure described later is usedto checkpoint the new DRUs.Observe that the procedures for DRU-fork and DRU-merge are very similar. Theydi�er primarily in the way the new DRU identi�ers are determined.4.5 Failure-free operationCheckpointing: The checkpointing algorithm presented earlier needs to be modi�ed toaccommodate the DRU-fork and DRU-merge protocols presented earlier. As before, when aDRU-leader wants to initiate a checkpoint, it increments its own checkpoint number (CN),takes a checkpoint and sends a marker message to each process in its DRU.When a process receives a message (marker or otherwise) tagged by a DRU-id identicalto its current DRU-id and tagged by a checkpoint number larger than its own, it sets its owncheckpoint number equal to that tagged with the message and takes a checkpoint before usingthe message.When a process receives a message (marker or otherwise) tagged by DRU-id equal tonext-DRU-id, the receiver process, before acting on the message, (a) sets its own checkpointnumber equal to the CN tagged to the message, (b) sets its DRU-id equal to next-DRU-id,(c) sets DRU-leader equal to next-DRU-leader, (d) sets its next-DRU-id equal to NULL, and(e) takes a checkpoint. 19

When a process receives a marker message not covered by above two cases, it ignoresthe marker message.Messages: Messages and order information is logged identically to the static recovery scheme.The only di�erence here is that a message is considered to be an intra-DRU message if thetagged DRU-id is identical to any DRU identi�er in the DRU-id-list. The reason is illustratedusing Figure 3. Figure 3 shows DRU1 consisting of processes P, Q, R, S and T. DRU1 performs
P

Q

T

R

S

A coordinated checkpoint

of DRU 1

A coordinated checkpoint

of DRU3

A coordinated checkpoint

of DRU2

σ

σ

σ

µ

µ

P

Q

T

R

S

M1

M2Figure 3: Example of the dependency vector update procedureDRU-fork and as a result, DRU2 and DRU3 are formed. DRU2 consists of processes P, Q andT, while DRU3 consists of R and S. For future reference, let the processes (P, Q, T) in DRU2take the �rst checkpoint during state intervals �P , �Q and �T respectively. Similarly, let theprocesses (R, S) in DRU3 take the �rst checkpoint in DRU3 during state intervals �R and �Srespectively.As the DRU-id tagged to the message is found in the DRU-id-list, messages M1 andM2 in Figure 3 are both treated as intra-DRU messages by their receivers. As elaborated inthe next subsection, if M1 or M2 need to be reproduced for failure recovery, the sender andreceiver processes will rollback to a checkpoint taken while in DRU1.Dependency vector update: Dependency vector update during failure-free operation isidentical to the static recovery scheme. However, the pseudo-dependency update procedure20

needs to be modi�ed. The modi�ed procedure is described below.4.6 Failure RecoveryAfter a failure is detected, dependency vectors of the processes are updated to add pseudo-dependencies. These updates ensure that if a process P rolls back to a checkpoint CN1, thenall processes in the DRU, say DRU1, of process P when it took checkpoint CN1 also roll backto checkpoint CN1. Note that process P may no longer be in DRU1. In fact, DRU1 may noteven exist when the failure is detected, as it may have forked or joined another DRU. Thepseudo-dependency update procedure has two components:� The �rst component updates the dependency vectors as described at the beginning ofSection 3.4. For Figure 3, the �rst component would add pairwise dependencies betweenstate intervals �P , �Q and �T (and similarly add dependencies between �R and �S).� The second component is required to update dependency vectors of the processes inDRUs that have forked into new DRUs. Instead of a precise procedure, we illustratethe procedure with the example of Figure 3. The second component of the pseudo-dependency update procedure would add pairwise dependencies between �P , �Q, �T ,and �R, �S . For example, �P would depend on �S , and vice-versa. As before, thedependency vectors for all state intervals subsequent to �P , �Q, �T , �R and �S areupdated to take into account the above updates.The rest of the recovery protocol is identical to that described earlier in Section 3with one addition. After the recovery is completed, all processes (including the DRU-leaders)clean up all the state information regarding the DRU-merge and DRU-join protocols. In otherwords, if a DRU-merge (DRU-fork) was in progress when a failure occurred, the protocol mustbe re-initiated after recovery. 21

5 Comparison with other relevant schemesSistla and Welch [11] propose an approach that partitions a system into multiple clusters.The messages passing between the clusters are treated as input-output messages. As shownin Section 2, this scheme can be obtained using our approach as well. However, in general,our approach does not require messages between DRUs to be treated as input-output.Lowry et al. [8] suggested an optimistic scheme for systems partitioned into clusters.This is an improvement over Sistla and Welch [11] where all messages across the clusters aretreated pessimistically. Lowry et al. design interfaces between clusters that allow (i) eachcluster to use di�erent recovery schemes and (ii) the messages between two clusters to belogged optimistically. Our work di�ers from [8] in its goals and the approach used. Our goal isto design a single recovery scheme for a distributed system that can adapt to the requirementsof an application. The distributed recovery units abstraction is used as a means for achievingthis goal. The goal in [8] is to build large distributed systems such that each partition can useits recovery scheme without any modi�cations.Johnson [4] proposed an output-driven optimistic message logging and checkpointingscheme, in which recording of needed recovery information on stable storage is driven by theneed to commit output to the outside world. Johnson allows each process to individuallychoose between messages logging and checkpointing, or only checkpointing. This
exibilitycan be used to adapt the performance of the recovery scheme to the needs of an application.Our approach di�ers from Johnson's approach in that we achieve adaptability by means ofthe DRU abstraction. We believe that our approach as well as Johnson's approach are bothgood candidates for the design of adaptive schemes. Suitability of either approach in practiceneeds to be evaluated further.6 ConclusionsThis report describes a novel approach for designing distributed recovery schemes. The pro-posed approach is based on the distributed recovery unit (DRU) abstraction. With this ab-22

straction, the system is viewed as a collection of DRUs, each DRU consisting of one or moreprocesses.A hybrid recovery scheme for such a system is designed using two other schemes, namedlocal and global recovery schemes. The performance of the hybrid recovery scheme is compa-rable with the local (global) recovery scheme when the number of processes in each DRU islarge (small). In general, the hybrid recovery scheme \interpolates" between the local andglobal recovery schemes. This feature of the hybrid recovery scheme allows the hybrid schemeto be made adaptive by dynamically changing the membership of various DRUs. The changesin DRU membership can be made using the dynamic recovery scheme presented in the report.Depending on the requirements of the application, the DRU sizes may adaptively chosen tobe small or large (or, some DRUs may be small, and others large).Design and evaluation of good heuristics to exploit the adaptive capability of the pro-posed approach is a subject of ongoing research.References[1] K. M. Chandy and L. Lamport, \Distributed snapshots: Determining global states indistributed systems," ACM Trans. Comp. Syst., vol. 3, pp. 63{75, February 1985.[2] E. N. Elnozahy and W. Zwaenepoel, \Manetho: Transparent rollback-recovery with lowoverhead, limited rollback, and fast output commit," IEEE Trans. Computers, vol. 41,May 1992.[3] J. Goldberg, I. Goldberg, and T. F. Lawrence, \Adaptive fault tolerance," in IEEE Work-shop on Advances in Parallel and Distributed Systems, pp. 127{132, October 1993.[4] D. B. Johnson, \E�cient transparent optimistic rollback recovery for distributed appli-cation programs," in Symposium on Reliable Distributed Systems, pp. 86{95, October1993.[5] D. B. Johnson and W. Zwaenepoel, \Recovery in distributed systems using optimisticmessage logging and checkpointing," Journal of Algorithms, vol. 11, pp. 462{491, Septem-ber 1990.[6] T. Juang and S. Venkatesan, \Crash recovery with little overhead," in International Conf.Distributed Computing Systems, pp. 454{461, 1991.23

[7] R. Koo and S. Toueg, \Checkpointing and rollback-recovery for distributed systems,"IEEE Trans. Softw. Eng., vol. 13, pp. 23{31, January 1987.[8] A. Lowry, J. R. Russell, and A. P. Goldberg, \Optimistic failure recovery for very largenetworks," in Symposium on Reliable Distributed Systems, pp. 66{75, 1991.[9] D. L. Russell, \State restoration in systems of communicating processes," IEEE Trans.Softw. Eng., vol. 6, pp. 183{194, March 1980.[10] R. D. Schlichting and F. B. Schneider, \Fail-stop processors: An approach to designingfault-tolerant computing systems," ACM Trans. Comp. Syst., vol. 1, pp. 222{238, August1983.[11] A. P. Sistla and J. L. Welch, \E�cient distributed recovery using message logging," inProc. ACM Symp. on Principles of Distributed Computing, pp. 223{238, August 1989.[12] R. E. Strom and S. A. Yemini, \Optimistic recovery in distributed systems," ACM Trans.Comp. Syst., vol. 3, pp. 204{226, August 1985.[13] N. H. Vaidya, \Dynamic cluster-based recovery: Pessimistic and optimistic schemes (pre-liminary version)," Tech. Rep. 93-027, Comp. Sc. Dept., Texas A&M Univ., May 1993.[14] Y. Wang and W. K. Fuchs, \Lazy checkpoint coordination for bounding rollback propa-gation," in Symposium on Reliable Distroibuted Systems, pp. 78{85, October 1993.

24

