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AbstractConsider a system consisting of a sender that wants to send a value to certainreceivers. Byzantine agreement protocols [2, 7, 8] have been proposed to achieve thisin the presence of arbitrary failures. The imposed requirement typically is that thefault-free receivers must all agree on the same value [7, 8]. (Dolev [2] analyzes asomewhat weaker form of agreement). It has been shown that such an agreement isimpossible if a third or more of the nodes are faulty [2, 7, 8].We propose an agreement protocol that achieves Lamport's Byzantine agreement[8] up to a certain number of faults and a degraded form of agreement with a highernumber of faults. Essentially, the degraded form of agreement allows the fault-freereceivers to agree on at most two di�erent values one of which is necessarily the de-fault value. The default value is distinguishable from all other values. The proposedapproach is named \degradable Byzantine agreement" or simply \degradable agree-ment". Speci�cally, m=u-degradable agreement is de�ned using two parameters, mand u, and the following four conditions. (The term node refers to the sender and thereceivers).(1) If the sender is fault-free and at most m nodes are faulty, then all the fault-freenodes must agree on the sender's value.(2) If the sender is faulty, and the number of faulty nodes is at most m, then all thefault-free nodes must agree on an identical value.(3) If the sender is fault-free, and the number of faulty nodes is more than m butat most u, then the fault-free nodes may be partitioned into at most two classes.The fault-free nodes in one of the classes must agree on the sender's value, andthe fault-free nodes in the other class must all agree on the default value.(4) If the sender is faulty, and the number of faulty nodes is more than m but atmost u, then the fault-free nodes may be partitioned into at most two classes.The fault-free nodes in one of the classes must agree on the default value, andthe fault-free nodes in the other class must all agree on an identical value.It is shown that at least 2m + u + 1 nodes are necessary to achieve m=u-degradableagreement. Anm=u-degradable agreement algorithm is presented for more than 2m+unodes. Also, network connectivity of m+ u+1 is shown to be necessary and su�cientto achieve m=u-degradable agreement. For a system containing more than 2m + unode, conditions (3) and (4) imply that, up to u faults, at least m+ 1 fault-free nodesare guaranteed to agree on the same value.



1 IntroductionConsider a system consisting of a sender that wants to send a value to certain receivers.Byzantine agreement (weak [7] or otherwise [8]) and Crusader agreement [2] protocols havebeen proposed to achieve this in the presence of arbitrary (possibly malicious) failures. Therequirement is typically that the fault-free receivers must all agree on the same value [8, 7].(Dolev [2] analyzes a somewhat weaker form of agreement.) Prior work has shown thatsuch agreements are impossible if a third of the nodes (or more) are faulty. This paper alsoassumes the arbitrary failure model which is also known as the Byzantine failure model.We propose an agreement protocol that achieves Lamport's Byzantine agreement2 [8]up to a certain number of failures and a degraded form of agreement with a higher number offaults. Essentially, the degraded form of agreement allows the fault-free receivers to agree onat most two di�erent values one of which is necessarily the default value.3 This is a degradedform as compared to Byzantine agreement [8] which requires all the fault-free receivers toagree on a single value. The proposed approach is called \degradable Byzantine agreement"or simply \degradable agreement" for brevity. The next section presents a de�nition ofdegradable agreement.This paper shows that degradable agreement is of interest in practice. It is shown thatdegradable agreement provides an ability to achieve forward recovery as well as backwardrecovery when the number of failures is large (more than a third of the nodes may be faulty).For the sake of simplicity, this paper draws on the concepts presented in two well-known papers by Lamport et al. [8] and Dolev [2]. Section 2 de�nes the proposed degradableagreement approach. Section 3 motivates the proposed approach and discusses an applica-tion. An algorithm for achieving degradable agreement is presented in Section 4. Bounds onthe number of nodes and connectivity for the proposed form of agreement are presented inSection 5. The problem addressed in this paper suggests a degradable clock synchronizationapproach. Section 6 discusses the issue of clock synchronization. Section 7 summarizes the2Byzantine agreement was presented by Lamport, Shostak and Pease. However, for brevity we refer toit as Lamport's Byzantine agreement.3Default value, denoted Vd, is distinguishable from all other values.1



results.2 Degradable Agreement ProtocolThe system model can be described as follows. The system consists of a sender and somereceivers. The sender wants to send its value to the receivers. In the following, the term nodemay refer to the sender or a receiver. A faulty node (sender or receiver) may demonstratearbitrary behavior. Vd denotes the default value. The default value Vd is assumed to bedistinguishable from all other relevant values.Degradable agreement is de�ned using two parameters, m and u, where u � m.Degradable agreement de�ned by parameters m and u is hereafter called m=u-degradableagreement. An m=u-degradable agreement protocol satis�es the following conditions, wheref is the number of faulty nodes.m=u-Degradable Agreement:� if f � m, then conditions D.1 and D.2 below must be satis�ed.� if m < f � u, then conditions D.3 and D.4 below must be satis�ed.(D.1) If the sender is fault-free, then all the fault-free receivers must agree on the sender'svalue.(D.2) If the sender is faulty, then the fault-free receivers must agree on an identical value.(D.3) If the sender is fault-free, then the fault-free receivers may be partitioned into at mosttwo classes. The fault-free receivers in one class must agree on the sender's value, andthe fault-free receivers in the other class must all agree on the default value.(D.4) If the sender is faulty, then the fault-free receivers may be partitioned into at mosttwo classes. The fault-free receivers in one class must agree on the default value, andthe fault-free receivers in the other class must all agree on an identical value.2



Conditions D.1 and D.2 are identical to those satis�ed by Lamport's Byzantine agree-ment [8]. Conditions D.3 and D.4 de�ne degraded agreement and are applied in fault situa-tions with more than m but at most u faults. Thus, when m = u, degradable agreement isequivalent to Lamport's Byzantine agreement.Let N be the number of nodes in the system. Observe that, if N > 2m + u thenm=u-degradable agreement ensures (by conditions D.3 and D.4) that at least m + 1 fault-free nodes (including the sender) agree on an identical value, even when the number offaults is more than m (but at most u). Thus, graceful degradation can be achieved. Notethat graceful degradation is possible up to u faults even when u � N=3 only if we insiston achieving Byzantine agreement only up to m faults for some m < jN�13 k. In otherwords, the capability to achieve Byzantine agreement can be traded with the capability toachieve degraded agreement up to a larger number of faults. (Note that the above does notcontradict the impossibility result in [4].)It is later proved that to achieve m=u-degradable agreement the system must consistof at least 2m + u + 1 nodes (including the sender), and also that 2m + u + 1 nodes aresu�cient. Therefore, given a system consisting of 7 nodes, one may achieve any one of thefollowing:� 2/2-degradable agreement, or� 1/4-degradable agreement, or� 0/6-degradable agreement.This illustrates the trade-o� between Byzantine agreement and degraded agreement. Thefollowing table lists the minimum number of nodes necessary for di�erent values of m andu. u 1 2 3 4 5m1 4 5 6 7 82 { 7 8 9 103 { { 10 11 123



It is known that if a third (or more) of the clocks are faulty, it is not possible to achieveclock synchronization [3, 6]. Clock synchronization is necessary to be able to correctly detectthe presence or absence of messages. Section 6 discusses this issue.3 MotivationConsider a fault tolerant system consisting of multiple computation channels. Figure 1(a)illustrates a system with three channels. Byzantine agreement is useful in such systemsto distribute information from a single sender (for example, a sensor) to all the channels[11]. The three channels in Figure 1(a) obtain their input from the sensor and then perform
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(a) (b)Figure 1: Multiple channel systemscomputations on that input. Eventually, the output of the three channels must be sent toan external entity (for example, to a controller). The external entity takes a majority voteon the output of the three channels and determines the correct value. It is clear that if thesender is itself faulty, the external entity may not be able to obtain the correct value. Thus,in such a system, Lamport's Byzantine agreement [8] ensures the following conditions:(B.1) Given is a system with 3m channels and 1 sender. If the sender is fault-free and atmost m channels are faulty, then the external entity obtains the correct value usingmajority vote. 4



(B.2) All the fault-free channels are in an identical state, up to m faults.Although the proposed approach is useful when multiple senders measure the samequantity and send its value to the channels, the discussion in this paper is limited to a singlesender. The three-channel system in the above example may fail, if two of the channelsobtained the same incorrect value from the sender. This could happen if two nodes out offour (three channels and one sender) are faulty, as Byzantine agreement with four nodes onlytolerates one fault. In general, if more than m faults occur, Byzantine agreement may resultin the external entity using an incorrect output, even if the sender is fault-free. However,Byzantine agreement tolerates up to m faults, meaning that forward recovery [10] can beperformed in the presence of up to m faults.The concept of a default value is pertinent to the discussion below. If the externalentity obtains a default value from the multiple channel system, it can take a \default"action which usually results in a safe operation. Thus, degradable agreement improves thesafety of the system. Another possibility is to re-do the computation (i.e. perform backwardrecovery [10]) whenever the external entity receives a default value. Backward recovery ise�ective against transient failures.Degradable agreement, thus, improves the ability to survive more than m faults.Obviously, achieving this requires more resources, but we show that the increase in resourcerequirements is minimal. Consider a four channel system shown in Figure 1(b). For thissystem,4 m = 1 and u = 2. Using the proposed degradable agreement approach the followingconditions can be ensured as compared to those listed above for Byzantine agreement.(C.1) Given is a system with (2m+u) channels and 1 sender (m � u). If the sender is fault-free and at most m channels are faulty, then the external entity obtains the correctvalue using (m+ u)-out-of-(2m + u) vote5 on the outputs of the 2m + u channels.(C.2) If the sender is fault-free and more than m but at most u channels are faulty, thenthe external entity obtains either the correct value or the default value.4This system contains �ve nodes: four channels and one sender.5(m + u)-out-of-(2m+ u) vote of 2m+ u values is � if � (m + u) values are �, default value otherwise.5



(C.3) The fault-free channels are all in an identical state if number of faults is at most m.Also, up to u faults, the fault-free channels are divided into at most two classes; thechannels in one class are in a \default" state (i.e. a safe state).It is clear that in many situations, it is safer to use the default value as comparedto an incorrect value. For instance, if a controller in a 
y-by-wire system receives a defaultvalue from the computer, as a safety precaution it can inform the pilot about the problem.Condition C.2 results in a correct or default output even when more than a third ofthe channels may be faulty. Condition C.1 is essentially the same as B.1. Thus, by conditionC.2, the degradable agreement approach improves the ability to survive a larger number offaults. Also, conditions C.2 and C.3 ensure that the state of the fault-free channels diverges\gracefully". (Two fault-free channels that are not in the default state are always in anidentical state.)The above discussion motivates the proposed degradable agreement approach. Theproposed approach, in general, improves the safety of the system and also improves theability of the system to perform backward recovery in the presence of more than m faults.Similar to Byzantine agreement, degradable agreement can perform forward recovery up tom faults.4 An Algorithm for m=u-Degradable AgreementThis section presents an algorithm to prove that m=u-degradable agreement can be achievedwith more than (2m+ u) nodes. No attempt is made here to present an e�cient algorithm.It is assumed that Vd is a default value that is distinguishable from other values.De�ne VOTE(�; �) of � values w1; w2; � � �w� as � if at least � of the � values are equalto �, else VOTE(�; �) is de�ned to be the default value Vd. Also, in case of a tie, de�neVOTE(�; �) = Vd. For example, VOTE(2,4) of values 1, 2, 2, 3 is 2 and VOTE(2,4) ofvalues 1, 2, 0, 3 is Vd. VOTE(2,4) of values 1, 2, 2, 1 is Vd because of the tie.Algorithm BYZ presented below may be viewed as an extension of an algorithm in6



[8]. BYZ assumes that the nodes are fully connected. Following assumptions are maderegarding messages when proving correctness of algorithm BYZ:(a) all messages are delivered correctly within a bounded delay,(b) source of a received message can be identi�ed,(c) presence or absence of a message can be correctly detected when the number of faultynodes is at most m, and(d) when more than m faults exist, a fault-free node may incorrectly assume a message tobe absent.Whenever a node detects a message to be absent, it assumes that the message containsvalue Vd. Assumptions (a), (b) and (c) above are similar to those made by others [8]. Themotivation behind assumption (d) will be clear in Section 6.Algorithm BYZ is recursive. The algorithm for m = 0 is omitted here. AlgorithmBYZ(m;m) achieves m=u-degradable agreement given at least 2m + u + 1 nodes. Nowwe present BYZ(1;m) and BYZ(t;m). In these algorithms, the following notation is used.In BYZ(1;m), n1 is the number of nodes to which algorithm BYZ(1;m) is being applied.Similarly, in BYZ(t;m), nt is the number of nodes to which algorithm BYZ(t;m) is beingapplied. N is the total number of nodes in the system. m and u are the two parameters thatde�ne the m=u-degradable agreement that we want to achieve in this system of N nodes.For BYZ(m;m), nm = N . It is assumed that N > 2m + u and u � m > 0. It can be seenthat for BYZ(t;m), nt = N �m+ t.Algorithm BYZ(1;m)1. The sender sends its value to all the (n1 � 1) receivers.2. Each receiver broadcasts the value it received from the sender to (n1�2) other receivers.As there are (n1 � 1) receivers, each receiver now has (n1 � 1) values.7



3. Each receiver uses VOTE(n1 � 1�m;n1 � 1) of these (n1 � 1) values.BYZ(1;m) is not recursive. Lemma 2 in Section 4.1 proves some properties of algo-rithm BYZ(1;m).Algorithm BYZ(t;m), 1 < t � m1. The sender sends its value to all the (nt � 1) receivers.2. For each i, let vi be the value receiver i received from the sender in step 1. Receiveri acts as the sender in algorithm BYZ(t � 1;m) to send the value vi to each of the(nt � 2) other receivers.3. For receiver i, let wi = vi and for each j 6= i, let wj be the value receiver i receivedfrom receiver j in step 2 (using algorithm BYZ(t� 1;m)). Thus, receiver i now hasnt � 1 values w1; w2; � � � ; wnt�1. Receiver i uses VOTE(nt � 1 � m;nt � 1) of these(nt � 1) values.Algorithm BYZ(m;m) achieves m=u-degradable agreement if N > 2m+u, as provedbelow. Note that as the recursion unfolds in BYZ(m;m), the values of nt and t change ateach level of the recursion, however, the value of m remains �xed.4.1 Proof of Correctness: Algorithm BYZThe correctness of algorithm BYZ is being proved under assumptions (a) through (d) listedearlier in this section. For future reference note that assumption (d) is applicable only infault situations where more than m nodes are faulty.When a message is detected to be absent by a node, that node considers the absentmessage to contain default value Vd. Therefore, the following assumes that each node alwayssends a message when it is supposed to; however, a faulty node may send an incorrectmessage (possibly with value Vd). (Also see Section 6 for a related discussion). Assume thatN > 2m+ u and u � m > 0. 8



Lemma 1 When BYZ(t;m) is called with t � 1;m � 1, the following conditions hold:(i) nt > t+ u+m and (ii) u < nt � 1 �m.Proof: The proof is by induction on t. Initially when BYZ(m;m) is executed, t = m,nt = nm = N , and t+u+m= 2m+u. As N > 2m+u, we have nt > t+u+m. Therefore,condition (i) holds for t = m.Now we assume that (i) holds for some t � m and show that it holds for t� 1. As(i) holds for t, we have nt > t+ u+m. BYZ(t� 1;m) is called in step 2 of BYZ(t;m) withnt � 1 nodes. As nt > t + u +m, we have (nt � 1) > (t � 1) + u +m. As nt�1 = nt � 1,condition (i) holds for t� 1.Thus, condition (i) of the lemma is proved. Condition (i) implies that u < nt� t�m.As t � 1, this implies that u < nt � 1�m. Thus, condition (ii) is also proved. 2Lemma 2 Let f be the number of faulty nodes in the system. If n1 > 1 + u+m, then1. BYZ(1;m) satis�es condition D.1 if f � m.2. BYZ(1;m) satis�es condition D.2 if f = 1.3. BYZ(1;m) satis�es condition D.3 if m < f � u.4. BYZ(1;m) satis�es condition D.4 if m = 1 and 1 < f � u.Proof: Let n1 > 1 + u+m. f is the number of faulty nodes in the system.Case 1: f � m and the sender is fault-free.Assume that the fault-free sender sends value � to the receivers in step 1 of BYZ(1;m).In step 2, each fault-free receiver broadcasts � (the value received from the sender) to theother (n1 � 2) receivers. When the broadcasts in step 2 of BYZ(1;m) are complete, eachreceiver will have (n1� 1) values, of which at least (n1� 1�m) must be � (because at least9



n1 � 1 � m of the receivers are fault-free). Also, as n1 > 1 + u + m and u � m, we haven1 � 1 �m > m. Therefore, no value other than � is received from any n1 � 1 �m nodes.Therefore, each fault-free node obtains � in step 3 of BYZ(1;m). Thus, item 1 in the lemmais proved.Case 2: f = 1 and the sender is faulty.In this case all the receivers are fault-free. Therefore, in step 2 of BYZ(1;m), eachreceiver must obtain the same set of n1� 1 values. This implies that in step 3, each receiverwill obtain the same value using VOTE(n1 � 1 �m;n1 � 1). Thus, item 2 in the lemma isproved.Case 3: m < f � u and the sender is fault-free.As more thanm nodes are faulty, by assumption (d), a fault-free node may incorrectlydeclare a message from another fault-free node as absent. Recollect that absent messagesare assumed to contain default value Vd.Assume that the sender sends value � to the receivers in step 1 of BYZ(1;m). Eachfault-free receiver broadcasts the value received from the sender to the other n1�2 receivers.When the broadcasts in step 2 of BYZ(1;m) are complete, each fault-free receiver will haven1 � 1 values of which at most u values may be di�erent from � and Vd (because at most ureceivers are faulty). By Lemma 1, n1�1�m > u. Therefore, in step 3, a fault-free receivercannot obtain VOTE(n1 � 1�m;n1 � 1) equal to any value other than � and Vd. In otherwords, each fault-free receiver must obtain VOTE(n1 � 1 �m;n1 � 1) equal to either � orVd. Thus, item 3 in the lemma is proved.Case 4: m = 1, 1 < f � u and the sender is faulty.Assumption (d) is applicable in this case.As m = 1, we have n1 > 2 + u and n1 � 1 �m = n1 � 2. As the sender is faulty, atleast n1 � u receivers are fault-free. 10



At the end of step 2 of BYZ(1;m), each fault-free receiver obtains a set of n1 � 1values. Assume that, in step 3, a receiver, say A, obtains VOTE(n1�2; n1�1) = �, � 6= Vd.This means that at least n1 � 2 of the n1 � 1 values obtained by A in step 2 are �. This inturn implies that at least (n1� 2)� (u� 1) = n1� 1�u fault-free receivers received � fromthe sender in step 1 of BYZ(1;m). Then, any fault-free receiver other than A, say receiverB, can have (at the end of step 2) at most u values that are di�erent from � and Vd. Asu < n1 � 2, receiver B cannot obtain VOTE(n1 � 2; n1 � 1) equal to any value other than� and Vd. In other words, if receiver A obtains value � 6= Vd in step 3, then every otherreceiver must obtain either � or Vd in step 3. Thus, item 4 in the lemma is proved. 2Lemma 1 presented earlier implies that the condition n1 > 1 + u + m required forLemma 2 to be true is satis�ed by BYZ(1;m).Lemmas 3 through 6 below prove that BYZ(m;m) achieves m=u-degradable agree-ment. The proofs of these lemmas assume that: (i) m > 1, (ii) N > 2m + u and (iii)u � m.Lemma 3 For 1 � t � m, algorithm BYZ(t;m) satis�es condition D.1 if nt > t+ u +mand at most m nodes are faulty.Proof: By Lemma 1, nt > t+ u+m. Also, it is given that u � m.The proof is by induction on t. The number of faulty nodes is at most m. ConditionD.1 assumes that the sender is fault-free. Therefore, the lemma is true for t = 1 by Lemma 2.We now assume that the lemma is true for BYZ(t�1;m) where 2 � t � m, and proveit for BYZ(t;m). In step 1 of BYZ(t;m), the fault-free sender sends a value, say �, to all the(nt�1) receivers. In step 2, each fault-free receiver acts as a sender in BYZ(t�1;m) to sendvalue � (which it received from the sender) to the other (nt�2) receivers. As nt > t+u+m,(nt � 1) > (t� 1) + u+m. Also, nt�1 = nt � 1. Therefore, the induction hypothesis holdsfor BYZ(t� 1;m). Thus, at the end of step 2, every fault-free receiver gets wj = � for eachfault-free receiver j. Since there are at most m faulty receivers, at least nt � 1 � m arefault-free. Therefore, each fault-free receiver i has wj = � for at least (nt � 1 �m) of the11



nt � 1 receivers. As m � u < nt � 1 � m (by Lemma 1), this implies that each fault-freereceiver obtains VOTE(nt � 1�m;nt � 1) = �. Thus, the lemma is proved for BYZ(t;m).2Lemma 4 For 1 � t � m, algorithm BYZ(t;m) satis�es condition D.2 if nt > t+ u +mand at most t nodes are faulty.Proof: The proof is by induction on t. By Lemma 2, BYZ(1;m) satis�es condition D.2if at most 1 node is faulty. We therefore assume that the lemma is true for BYZ(t� 1;m)where 2 � t � m, and prove it for BYZ(t;m).The number of faulty nodes is at most t. Condition D.2 assumes that the senderis faulty. Therefore, at most (t � 1) of the receivers are faulty. As nt > t + u + m,(nt � 1) > (t � 1) + u +m. In step 2, a receiver uses BYZ(t� 1;m) to send the value itreceived from the sender to the other nt�2 receivers. As at most t�1 of the nt�1 receiversare faulty, we can apply the induction hypothesis to conclude that BYZ(t� 1;m) satis�escondition D.2 (note that nt�1 = nt�1). As t � m, by Lemma 3, it follows that BYZ(t�1;m)satis�es condition D.1 as well. Hence, at the end of step 2 of BYZ(t;m), any two fault-freereceivers must obtain the same vector w1; w2; � � � ; wnt�1. Therefore, all fault-free receiversmust obtain the same value VOTE(nt � 1 � m;nt � 1) in step 3 of BYZ(t;m). Thus, thelemma is proved for BYZ(t;m). 2Lemma 5 For 1 � t � m, algorithm BYZ(t;m) satis�es condition D.3 if nt > t+ u +mand more than m but at most u nodes are faulty.Proof: The proof is by induction on t. Condition D.3 assumes that the sender is fault-free. By Lemma 2, BYZ(1;m) satis�es condition D.3 if at most u nodes are faulty. Wetherefore assume that the lemma is true for BYZ(t� 1;m) where 2 � t � m, and prove itfor BYZ(t;m).In step 1 of BYZ(t;m), the fault-free sender sends a value, say �, to all the (nt � 1)receivers. Receiver j receives value vj from the sender in step 1. As more than m nodes are12



faulty, value vj received by a fault-free receiver j may be � or Vd (by assumption (d)).In step 2, each fault-free receiver applies BYZ(t � 1;m) with (nt � 1) nodes. Asnt > t+u+m, (nt� 1) > (t� 1) +u+m. Also, nt�1 = nt� 1. Therefore, we can apply theinduction hypothesis to conclude that every fault-free receiver gets wj = vj or Vd from eachfault-free receiver j (using BYZ(t� 1;m)). As vj itself may be � or Vd, this implies thatevery fault-free receiver gets wj = � or Vd from each fault-free receiver j. Since at most ureceivers are faulty, at least nt � 1� u of the nt� 1 values received (in step 2 of BYZ(t;m))by any fault-free receiver must be � or Vd. Now, u < nt � 1 �m by Lemma 1. Therefore,each fault-free receiver must obtain VOTE(nt�1�m;nt�1) equal to either � or Vd. Thus,the lemma is proved for BYZ(t;m). 2Lemma 6 Algorithm BYZ(m;m) satis�es condition D.4 if more than m but at most u nodesare faulty and nm > 2m+ u.Proof: Condition D.4 assumes that the number of faulty nodes is at most u and thesender is faulty. Therefore, at most (u � 1) of the receivers are faulty. For BYZ(m;m),n = N > 2m+ u.In step 2 of BYZ(m;m), each fault-free receiver sends the value it received (from thesender) to the other nm � 2 receivers using BYZ(m� 1;m). As nm > 2m + u, (nm � 1) >(m�1)+u+m. Also, nm�1 = nm�1. Therefore, by Lemma 5, we know that BYZ(m�1;m)satis�es condition D.3. As at most u� 1 receivers are faulty, at least nm � u are fault-free.Without loss of generality, assume that receivers 1 through nm � u are fault-free. vj is thevalue fault-free receiver j received from the sender in step 1 of BYZ(m;m). Therefore, atthe end of step 2, each fault-free receiver must obtain a vector of nm � 1 values of the form(v1=Vd; v2=Vd; � � � ; vnm�u=Vd;X; � � � ;X), where vj=Vd indicates that the corresponding valueis either vj or Vd, and X denotes a value that is not relevant in our discussion here.Now, suppose that in step 3 of BYZ(m;m), a fault-free receiver i obtains VOTE(nm�1 � m;nm � 1) = � where � 6= Vd. This implies that, for fault-free receiver i, at least(nm � 1 �m) � (u � 1) = nm � m � u of the �rst nm � u values in the vector of nm � 113



values must be �. As nm = N , nm � m � u � m + 1. This implies that at least m + 1fault-free receivers received � from the sender in step 1. Therefore, each fault-free receivermust have (at the end of step 2 of BYZ(m;m)) at least m+1 values that are � or Vd. Thus,VOTE(nm � 1 �m;nm � 1) cannot be any value other than � and Vd. Thus, the lemma isproved. 2Theorem 1 BYZ(m;m) achieves m=u-degradable agreement if N > 2m+ u.Proof: For m = 1, the proof follows from Lemma 2. For m > 1, the proof follows fromLemma 1 and from Lemmas 3 through 6 by choosing t = m. 25 Bounds for Degradable AgreementThis section presents the lower bounds on the number of nodes and the network connectivitynecessary to achieve m=u-degradable agreement. For future reference note that, by de�ni-tion, a system that achieves m=u-degradable agreement also achieves Byzantine agreement[8] up to m faults.Theorem 2 Given N nodes, m=u-degradable agreement can be achieved only if N > 2m+u.Proof: The proof is in two parts. Part I proves that 1/2-degradable agreement is impos-sible with less than 5 nodes. Part II extends this result to prove the theorem in general.Part I: It is clear that the number of nodes must be at least 4, else Byzantine agreementwith 1 fault cannot be achieved. Therefore, assume that 1/2-degradable agreement can beachieved in a system of 4 nodes. Let the nodes be named S, A, B and C, where S is the sendernode. Figures 2(a) through (c) illustrate three fault scenarios; the shaded nodes are faulty.In the following, let � and � be two di�erent values distinct from Vd, i.e., Vd 6= � 6= � 6= Vd.In scenario (a), only node A is faulty. Also, in scenario (a), let the sender's valuebe �. Therefore, by condition D.1, fault-free nodes B and C must agree on �. The arcs in14
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(a)                                             (b)                                            (c)Figure 2: Proving lower bound on the number of nodesFigure 2(a) indicate the values sent by S to the other nodes. Value � written below nodeB (C) in the �gure indicates that node B (C) may tell the other receivers that the sendersent him �. Value � written below node A indicates that node A pretends to have received� from sender S. As node A is faulty, such a behavior is possible.In scenario (b), only sender node S is faulty. Also, the faulty sender S sends � tonode A and � to nodes B and C, as indicated in Figure 2(b). As node S is faulty, such abehavior is possible. Now, fault-free node B cannot distinguish between scenarios (a) and(b). As seen above, in scenario (a), node B agrees on �. Hence, in scenario (b) also node Bmust agree on �. Therefore, by condition D.2, nodes A and C too must agree on �.In scenario (c), nodes B and C are faulty. Also, let the sender's value be �. Addition-ally, in scenario (c) assume that faulty nodes B and C pretend that they received value �from the sender, as illustrated in Figure 2(c). Now, fault-free node A cannot distinguish be-tween scenarios (b) and (c). We have already concluded that node A agrees on � in scenario(b). Therefore, A must agree on � in scenario (c) as well. However, condition D.3 requiresthat fault-free node A should agree on either � or Vd in scenario (c). As � 6= � 6= Vd, this isa contradiction.Thus, 1/2-degradable agreement cannot be achieved with less than 5 nodes.Part II: The proof in Part II is similar to a proof in [8]. It is clear that to achieve m=u-degradable agreement at least 3m + 1 nodes are necessary (otherwise Byzantine agreementcannot be achieved for m faults). Therefore, consider a system consisting of N nodes such15



that N = 3m+ � where 1 � � � (u�m). Thus, N � 2m + u. Also, m + � � u. Assumethat m=u-degradable agreement can be achieved in this system.Divide the 3m + � nodes into four groups such that three groups contain m nodeseach and the fourth group contains � nodes. (The sender is included in one of the �rst threegroups). Name the three groups containing m nodes each as Sm, Am and Bm, where Sm isthe group that contains the sender node. The group containing � nodes is named C�. Now,assume that the four node system in Figure 2 simulates the 3m + � node system; nodes S,A, B and C in Figure 2 simulate the nodes in Sm, Am, Bm and C�, respectively. Node Aagrees on value � only if all the nodes in Am agree on value � (similarly for S, B and C).Also, if node A is faulty, then all the nodes in Am are faulty (similarly for S, B and C). Now,as the 3m + � node system can achieve m=u-agreement, it should be able to reach correctagreement in all the three fault scenarios corresponding to those illustrated in Figure 2. Butthat is an impossibility as shown in Part I. 2As proved by the correctness of algorithm BYZ, 2m + u + 1 nodes are not onlynecessary but also su�cient to achieve m=u-degradable agreement. The following theoremstates the bound on network connectivity.Theorem 3 Given a system containing at least 2m+u+1 nodes, m=u-degradable agreementcan be achieved if and only if network connectivity is at least m+ u+ 1.Proof: Appendix A presents the proof. 26 Message Passing and Clock SynchronizationAn important implementation issue is that of clock synchronization. In order to ensure thatpresence or absence of a message can be detected, it is necessary to synchronize the logicalclocks of all the fault-free nodes. However, it has been shown that clock synchronizationcannot be achieved if a third (or more) clocks are faulty [3, 6]. When using m=u-degradableagreement, umay be larger than a third of the number of nodes. Thus, clock synchronization16



cannot be guaranteed if a node being faulty necessarily implies that its clock is faulty aswell. There are three approaches to deal with this problem, as discussed in the followingthree subsections. The �rst two approaches use some form of clock synchronization, whilethe third relaxes the requirement of clock synchronization.6.1 Degradable Clock SynchronizationAlgorithm BYZ was earlier proved correct under assumptions (a) through (d) listed inSection 4. Assumptions (c) and (d) are re-stated below.(c) When at most m nodes are faulty, each fault-free node correctly detects absence orpresence of messages from other nodes. (This requires clock synchronization.)(d) When more than m nodes are faulty, a fault-free node may incorrectly declare a mes-sage from another node to be absent. (This may happen due to time-outs.) In otherwords, absence of a message is always correctly detected, but presence of a messagemay not be correctly detected when more than m faults exist.Condition (c) can be satis�ed, provided that the logical clocks of fault-free nodes aresynchronized up to m faults. This is achievable, as N3 > 2m+u3 � m.Condition (d) can always be satis�ed. When the clocks are not synchronized, a fault-free node may time-out too early, thereby incorrectly declaring a message to be absent.A message that is actually absent will not be \created" due to lack of synchronization.(We assume that messages are numbered to facilitate detection of missing and duplicatemessages.)The above discussion and the proof of BYZ in Section 4 imply correctness of algo-rithm BYZ in the sense that m=u-degradable agreement is achieved whenever the algorithmterminates. However, in the absence of clock synchronization with more than m faults, thealgorithm is not yet guaranteed to complete within \bounded" time. The term bounded timeimplies that the maximum time required is upper bounded by a known �nite constant.17



When the number of faults is at mostm, all the fault-free nodes will have synchronizedlogical clocks. Therefore, it is possible to determine an upper bound, say tupper, such thatagreement algorithm BYZ must terminate on each node by the time its physical clockreads tupper. As shown in Appendix B, algorithm termination within bounded time can beguaranteed with more than m faults if one of the following is true:1. at least m+ 1 fault free nodes have their clocks synchronized and \approximate" realtime, or2. at least m+1 fault-free nodes detect (within bounded time) the presence of more thanm faulty nodes.Keeping the above conditions in mind, we introduce the following problem.m=u-Degradable Clock Synchronization:1. if at mostm clocks are faulty, all the fault-free clocks must be synchronized and should\approximate" the real time.62. if more than m but at most u clocks are faulty then, either� at least m+1 fault-free clocks must be synchronized and should approximate thereal time, or� at least m+1 fault-free clocks should detect the existence of more than m faultyclocks within bounded time.We conjecture that m=u-degradable clock synchronization can be achieved if and only ifthere are more than 2m + u clocks. Motivation for this conjecture is the observation inSection 2 that, given 2m+u+1 nodes, if at most u nodes are faulty, at least m+1 fault-freenodes agree on the same value using m=u-degradable agreement.6Approximate means that the logical clock is within a known linear envelope around the real time. Sucha logical clock is also said to be accurate [12]. 18



While a solution to the above m=u-Degradable Clock Synchronization problem issu�cient to guarantee termination of BYZ within bounded time, it is not a necessary condi-tion. Section 6.3 presents another solution that terminates BYZ within a bounded amountof time, up to u faults, using the physical clocks.6.2 Traditional Clock SynchronizationOne solution, applicable to systems such as FTMP, NETS [11] and FTP [5], is the use ofhardware clock synchronization (as opposed to software algorithms). In typical systems,the complexity and cost of clock hardware is orders of magnitude lower as compared to theprocessor (or node) complexity. Therefore, the failure rates for clock hardware are likelyto be signi�cantly lower. Hence, one may assume that at most a third of the clocks mayfail (although more than a third of the processors may fail). In such a case the term \nodefailure" in our discussion in this paper refers to the failure of the processor. Essentially,a processor being faulty does not necessarily imply that the associated clock hardware isfaulty as well. For example, in Figure 1(b), we may assume that at most one clock may befaulty, while using 1=2-degradable agreement for the processors. Such an assumption is notlikely to a�ect the overall system reliability or safety adversely as the clock failure rates aremuch lower than processor failure rates. Also, as clock complexity is lower, it is possible touse conservative designs to further lower the failure rates.Another approach is to use more clocks than the number of processors. For example,for the system in Figure 1(b), one may use two more clocks in addition to those associatedwith each of the nodes, making the system capable of tolerating two clock failures. Additionof 3� + 1 � N clocks can be used to make the system capable of tolerating up to � clockfailures, for some � where m < � � u. (If N > 3�, no additional clocks are necessary.) Notethat the additional clocks form (3� + 1 � N) new nodes, however, the new nodes containonly clocks (see Figure 3). This idea is analogous to the concept of witnesses proposed formaintaining consistency in replicated �le systems [9].19
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3Figure 3: Example: A system with �ve original nodes (each containing a processor and aclock) and two new nodes (each containing only a clock)6.3 Loosing Clock Synchronization With More Than m FaultsEach node has an associated physical clock and a logical clock. The logical clocks of thefault-free nodes are kept synchronized (whenever possible). As pointed out in Section 6.1,provided the logical clocks of fault-free nodes are synchronized, an upper bound tupper canbe determined such that each fault-free node completes executing algorithm BYZ by thetime its physical clock reads tupper.Consider the following steps to be performed by each fault-free node. We assumethat logical clocks are synchronized using any algorithm (e.g. [12]) that tolerates m faultsin N nodes.� Perform algorithm BYZ.� If physical clock reads tupper, but BYZ has not terminated, then (i) terminate BYZ,and (ii) accept value VdWhen at mostm nodes are faulty, the logical clocks of all fault-free nodes will be synchronizedand each fault-free node would have completed BYZ when its physical clock reads tupper.When the number of faults is larger than m, the logical clock of a fault-free node mayno longer be synchronized. However, it will terminate algorithm BYZ when its physicalclock reaches tupper (if it has not already completed). Therefore, all the fault-free nodes willterminate execution of BYZ within bounded time. The above steps force a fault-free node toagree on value Vd, when the physical clock exceeds tupper (and BYZ has not completed). Asthis situation can occur only when more than m faults exists, agreeing on Vd does not violate20



the requirements of degradable agreement. Additionally, the physical clock of a fault-freenode will reach tupper within bounded time. Therefore, the above steps result in completionof BYZ within bounded time.7 Summarym=u-degradable agreement protocol that achieves Lamport's Byzantine agreement [8] upto m faults, and a degraded form of agreement with more than m but at most u faults isproposed. Up to m faults, all the fault-free nodes agree on an identical value. For morethan m faults (up to u faults), the degraded form of agreement allows the fault-free nodesto agree on at most two di�erent values one of which is necessarily the default value; theother value is the sender's value if the sender is fault-free. It is shown that 2m+u+1 nodesare necessary and su�cient to achieve m=u-degradable agreement. An m=u-degradableagreement algorithm is presented for more than 2m+ u nodes. Also, network connectivityof m+ u+ 1 is shown to be necessary and su�cient to perform m=u-degradable agreement.The results presented in this paper suggest that degradable agreement is a cost-e�ective approach for tolerating a small number of Byzantine failures using forward recoveryand a large number of failures using backward recovery. Further research is required toexplore the applications of degradable agreement.The paper also formulates the problem of degradable clock synchronization. Thisproblem is a subject of further research.A Network Connectivity of m+u+1 is Necessary andSu�cientLet N � 2m+ u+ 1 be the number of nodes in the system under consideration, and let Grepresent the network of nodes. Let the connectivity of G be � � m+ u.Proof of Necessity: This proof is similar to a proof in [2].21



It is clear that connectivity � must be at least 2m+1, otherwise Byzantine agreementis not possible with m faults [4]. Therefore, let 2m < � � m + u. Assume that m=u-degradable agreement can be achieved in this system.Consider the following scenario. Let F = fa1; a2; � � � ; a�g be a set of nodes which candisconnect the network into two non-empty parts G1 and G2. Let F1 = fa1; � � � ; amg andF2 = fam+1; � � � ; a�g. Thus, F1 [F2 = F and F1 \F2 = ;. Also jF1j = m and m < jF2j � u.Without loss of generality, assume that the sender node is either in G1 or in F2. (Notethat if the sender is in F , one can always de�ne F2 such that the sender belongs to F2). Weconsider each case separately.Case I: The sender is in G1. Consider the following two fault scenarios, whereVd 6= � 6= � 6= Vd.(1) The sender is fault-free and its value is �. The nodes in F1 are all faulty and allother nodes are fault-free. In this scenario, by condition D.1, all nodes in G2 must agree on�. (2) The sender is fault-free and its value is �. The nodes in F2 are all faulty and allother nodes are fault-free. In this scenario, by condition D.3, all nodes in G2 must agree oneither � or Vd.Let the present fault scenario be (1). Thus, all nodes in F1 are faulty. All the messagesbetween G1 and G2 must be relayed through the nodes in F = F1 [ F2. Now, the faultynodes in F1 can always corrupt the messages to G2 in such a way that nodes in G2 cannotdistinguish between fault scenarios (1) and (2). As scenarios (1) and (2) require the nodesin G2 to agree on di�erent values (recollect that � 6= � 6= Vd), nodes in G2 cannot satisfythe requirements of degradable agreement.Case II: The sender is in F2. Consider three fault scenarios below, where Vd 6=� 6= � 6= Vd, and all the nodes in G1 and G2 are fault-free.(3) The sender is fault-free and its value is �. The nodes in F1 are all faulty and allother nodes are fault-free. In this scenario, by condition D.1, all nodes in G1 must agree on�. 22



(4) All the nodes in F2 including the sender are faulty. The nodes in F1 are allfault-free. In this scenario, the nodes in G1 and G2 must satisfy condition D.4.(5) The sender is fault-free and its value is �. The nodes in F1 are all faulty and allother nodes are fault-free. In this scenario, by condition D.1, all nodes in G2 must agree on�. Let the present fault scenario be (4). Thus, all nodes in F2 are faulty. All themessages between G1 and G2 must be relayed through the nodes in F = F1 [ F2. Now, thefaulty nodes in F2 can always corrupt the messages to G1 in such a way that nodes in G1cannot distinguish between fault scenarios (3) and (4). As scenario (3) requires nodes in G1to agree on �, in the present scenario also, the nodes in G1 must agree on �. At the sametime, the faulty nodes in F2 can also corrupt the messages to G2 in such a way that nodesin G2 cannot distinguish between fault scenarios (4) and (5). As scenario (5) requires nodesin G2 to agree on �, in the present scenario also, the nodes in G2 must agree on �. Thus,in the present scenario, the nodes in G1 and G2 end up agreeing on � and � respectively,where Vd 6= � 6= � 6= Vd. This violates condition D.4 of degradable agreement.The above two cases together prove that network connectivity ofm+u+1 is necessaryto achieve degradable agreement.Proof of Su�ciency: For a network of connectivity � � m + u + 1, algorithm BYZpresented in Section 4 can be used with the modi�cation described here. (Instead of thefollowing procedure, a procedure similar to purifying scheme presented by Dolev [2] mayalso be used.)The original sender and the �nal destination of each message are included in themessage (in sender and destination �elds). For every message sent between two nodesduring algorithm BYZ, say between nodes A and B, the following procedure is used. NodeA sends m+ u+ 1 copies of the message to node B on m+ u + 1 disjoint paths. At leastm+u+1 disjoint paths exist between A and B, as the network connectivity is � � m+u+1[1]. Node B and other nodes are aware of the paths used by A to send messages to B.Assume that node D receives a message from node C. Also assume that the sender23



and destination �elds in the message indicate that A is the original sender of the messageand B is the �nal destination.7 Then, node D determines whether the link (C,D) lies on oneof the m + u + 1 paths used by A to send a message to B. If (C,D) is included in one ofthese paths, then D forwards the message to the next node on that path, else D deletes themessage.The �nal destination, node B, accepts exactly one copy of a message on each ofthe m + u + 1 paths (and discards others if more are received). When node B receivesthese m+ u+ 1 copies,8 it assumes that the message sent by node A has content given byVOTE(u+ 1;m+ u+ 1) of these m+ u+ 1 copies. Two cases are possible.Case 1: At most m nodes are faulty. Then, at least u+1 of the message copies musttravel paths that do not include any faulty nodes. Therefore, node B must correctly receiveat least u+1 copies of the message. Thus, VOTE(u+1;m+u+1) of the m+u+1 messagecopies must be the correct message. In this case, because all messages between fault-freenodes are received correctly, algorithm BYZ remains correct.Case 2: More than m but at most u nodes are faulty. Then, at most u copies of themessage copies received by node B may contain incorrect contents. Therefore, when nodeB takes VOTE(u+ 1;m+ u+1) of these m+ u+1 copies, it may either obtain the correctmessage or it may obtain Vd. This is equivalent to saying that, when more than m butat most u nodes are faulty, a fault-free node may incorrectly declare a message as absent.(Recollect that absent message are assumed to contain value Vd). In Section 4, algorithmBYZ was proved correct under this condition (i.e. assumption (d)). Therefore, connectivityof t+ u+ 1 is su�cient.7If the message was relayed through a faulty node before it reached D, the destination and sender �eldsin the message may be corrupted. The procedure described here works in spite of such corruption.8If node B detects that a messages copy is absent, it assumes the message copy's content to be Vd.24



B Algorithm TerminationWhen the number of faults is at most m, all the fault-free nodes will have synchronizedlogical clocks. Therefore, it is possible to determine an upper bound, say tupper, such thatagreement algorithm BYZ must terminate on each node by the time its physical clock readstupper. As shown below, algorithm termination within bounded time can be guaranteed withmore than m faults if one of the following is true:1. at least m+ 1 fault free nodes have their clocks synchronized and \approximate" realtime, or2. at least m+1 fault-free nodes detect (within bounded time) the presence of more thanm faulty nodes.To guarantee termination within bounded time, each fault-free node performs thefollowing steps along with BYZ. In the following, a termination message is assumed to be aspecial type of message that can be distinguished from all other messages.(i) If more than m faults are detected and the agreement algorithm has not termi-nated, then: terminate BYZ, agree on value Vd, and broadcast a termination message,(ii) If physical clock � tupper and algorithm has not terminated, then: terminate BYZ,agree on value Vd, and broadcast a termination message,(iii) If algorithm BYZ has terminated and physical clock � tupper then: broadcast atermination message.(iv) If termination messages received from m+ 1 distinct nodes and algorithm BYZhas not terminated then: terminate BYZ, agree on Vd, and broadcast a termination message.Let S be largest set of fault-free nodes that have their logical clocks synchronized(and the clocks approximate real time). Consider the following two situations, where f isthe number of faulty nodes. 25



Case 1: f � m. In this case, S must contain all the fault-free nodes. Therefore, whenthe physical clock of a fault-free node reaches tupper, it must have completed agreementalgorithm BYZ. Thus, in this case, all nodes obviously complete BYZ within bounded time.Case 2: m < f � u. In this case, by the two conditions stated at the beginning of thissection, there are two possibilities.(2.1) m+1 nodes have their logical clocks synchronized (and the clocks approximatereal time). Thesem+1 nodes complete BYZ within bounded time and broadcast terminationmessages to all the nodes (using step (ii) or (iii) above). As message transmission takesbounded time (the bound is known), these messages reach a fault-free node within boundedtime. A fault-free node terminates BYZ when it receives m + 1 termination messages (ifits algorithm has not completed already), as per step (iv) above. Thus, all fault-free nodesterminate BYZ within a bounded time.(2.2) m + 1 fault-free nodes detect the presence of more than m faults. Thesenodes will broadcast a termination message to all the nodes and also terminate their ownalgorithm BYZ (as per step (i) above). Thus, each fault-free node must receive at leastm + 1 termination messages and then terminate its algorithm BYZ (if it has not alreadycompleted), as per step (iv). Similar to case (2.1) above, here also, all fault-free nodesterminate BYZ within a bounded time.References[1] N. Deo, Graph Theory with Applications to Engineering and Computer Science. Engle-wood Cli�s NJ: Prentice-Hall, 1984.[2] D. Dolev, \The Byzantine generals strike again," J. Algo., pp. 14{30, 1982.[3] D. Dolev, J. Y. Halpern, and H. R. Strong, \On the possibility and impossibility ofachieving clock synchronization," J. Computer and System Sciences, vol. 32, pp. 230{250, 1986.[4] M. J. Fischer, N. A. Lynch, and M. Merritt, \Easy impossibility proofs for distributedconsensus problems," in Fourth ACM Conf. Distr. Comp., pp. 59{70, 1985.26
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