
Degradable Agreement in the Presence ofByzantine FaultsNitin H. VaidyaTechnical Report # 92-020

AbstractConsider a system consisting of a sender that wants to send a value to certainreceivers. Byzantine agreement protocols [7, 6, 2] have been proposed to achieve thisin the presence of arbitrary failures. The imposed requirement typically is that thefault-free receivers must all agree on the same value [7, 6]. (Dolev [2] analyzes aseemingly weaker form of agreement). It has been shown that such an agreement isimpossible if a third or more of the nodes are faulty [7, 6, 2].We propose an agreement protocol that achieves Lamport's Byzantine agreement[7] up to a certain number of faults and a degraded form of agreement with a highernumber of faults. Essentially, the degraded form of agreement allows the fault-freereceivers to agree on at most two di�erent values one of which is necessarily the de-fault value. The default value is distinguishable from all other values. The proposedapproach is named \degradable agreement". Speci�cally, m=u-degradable agreementis de�ned using two parameters, m and u, and the following four conditions. (Theterm node refers to the sender and the receivers).(1) If the sender is fault-free and at most m nodes are faulty, then all the fault-freenodes must agree on the sender's value.(2) If the sender is faulty, and the number of faulty nodes is at most m, then all thefault-free nodes must agree on an identical value.(3) If the sender is fault-free, and the number of faulty nodes is more than m butat most u, then the fault-free nodes may be partitioned into at most two classes.The fault-free nodes in one of the classes must agree on the sender's value, andthe fault-free nodes in the other class must all agree on the default value.(4) If the sender is faulty, and the number of faulty nodes is more than m but atmost u, then the fault-free nodes may be partitioned into at most two classes.The fault-free nodes in one of the classes must agree on the default value, andthe fault-free nodes in the other class must all agree on an identical value.It is shown that at least 2m+u+1 nodes and network connectivity of at least m+u+1are necessary to achieve m=u-degradable agreement. An m=u-degradable agreementalgorithm is presented for more than 2m+u nodes. Conditions (3) and (4) imply that,up to u faults, at least m + 1 fault-free nodes are guaranteed to agree on the samevalue.

1 IntroductionConsider a system consisting of a sender that wants to send a value to certain receivers.Byzantine agreement (weak [6] or otherwise [7]) and Crusader agreement [2] protocols havebeen proposed to achieve this in the presence of arbitrary (possibly malicious) failures. Therequirement is typically that the fault-free receivers must all agree on the same value [7, 6].(Dolev [2] analyzes a seemingly weaker form of agreement). Prior work has shown that suchagreements are impossible if a third of the nodes (or more) are faulty. This report alsoassumes the arbitrary failure model which is also known as the Byzantine failure model.We propose an agreement protocol that achieves Lamport's Byzantine agreement [7]up to a certain number of failures and a degraded form of agreement with a higher number offaults. Essentially, the degraded form of agreement allows the fault-free receivers to agree onat most two di�erent values one of which is necessarily the default value.1 This is a degradedform as compared to Byzantine agreement [7] which requires all the fault-free receivers toagree on a single value. The proposed approach is named \degradable agreement". Thenext section presents a de�nition of degradable agreement.This report shows that degradable agreement is of interest in practice. Also, it isshown that degradable agreement provides an ability to achieve forward recovery as well asbackward recovery when the number of failures is large (more than a third of the nodes maybe faulty).For the sake of simplicity, this report draws on and extends the concepts presentedin two well-known report by Lamport et al. [7] and Dolev [2].Section 2 de�nes the proposed degradable agreement approach. Section 3 motivatesthe proposed approach and discusses an application. An algorithm for achieving the pro-posed agreement is presented in Section 4. Lower bounds on the number of nodes andconnectivity for the proposed form of agreement are presented in Section 5. The problemaddressed in this report suggests a degradable clock synchronization approach. Section 6discusses the issue of clock synchronization. Section 7 summarizes the results.1Default value, denoted Vd, is distinguishable from all other values.1

2 Degradable Agreement ProtocolThe system model can be described as follows. The system consists of a sender and somereceivers. The sender wants to send its value to the receivers. In the following, the term nodemay refer to the sender or a receiver. A faulty node (sender or receiver) may demonstratearbitrary behavior. Vd denotes the default value. The default value Vd is assumed to bedistinguishable from all other relevant values.Degradable agreement is de�ned using two parameters, m and u. Degradable agree-ment de�ned by parameters m and u is hereafter called m=u-degradable agreement. Anm=u-degradable agreement protocol satis�es the following conditions, where f is the num-ber of faulty nodes.m=u-Degradable Agreement:� if f � m, then conditions D.1 and D.2 below must be satis�ed.� if m < f � u, then conditions D.3 and D.4 below must be satis�ed.(D.1) If the sender is fault-free, then all the fault-free receivers must agree on the sender'svalue.(D.2) If the sender is faulty, then the fault-free receivers must agree on an identical value.(D.3) If the sender is fault-free, then the fault-free receivers may be partitioned into at mosttwo classes. The fault-free receivers in one class must agree on the sender's value, andthe fault-free receivers in the other class must all agree on the default value.(D.4) If the sender is faulty, then the fault-free receivers may be partitioned into at mosttwo classes. The fault-free receivers in one class must agree on the default value, andthe fault-free receivers in the other class must all agree on an identical value.Conditions D.1 and D.2 are identical to those satis�ed by Lamport's Byzantine agree-ment [7]. Conditions D.3 and D.4 de�ne degraded agreement and are applied in fault situa-2

tions with more than m but at most u faults. Thus, when m = u, degradable agreement isequivalent to Lamport's Byzantine agreement.Let N be the number of nodes in the system. Observe that, if N > 2m + u thenm=u-degradable agreement ensures (by conditions D.3 and D.4) that at least m+1 fault-freenodes (including the sender) agree on an identical value, even when the number of faultsis more than m (but at most u). Thus graceful degradation can be achieved. Note thatgraceful degradation is possible up to u faults even when u � N=3 only if we insist onachieving Byzantine agreement only up to m faults for some m < jN�13 k. In other words,the capability to achieve Byzantine agreement can be traded with the capability to achievedegraded agreement up to a larger number of faults.It is later proved that to achieve m=u-degradable agreement the system must consistof at least 2m + u + 1 nodes (including the sender), and also that 2m + u + 1 nodes aresu�cient. Therefore, given a system consisting of 7 nodes, one may achieve one of thefollowing:� 2/2-degradable agreement, or� 1/4-degradable agreement, or� 0/6-degradable agreement.This illustrates the trade-o� between Byzantine agreement and degraded agreement. Thefollowing table lists the minimum number of nodes necessary for di�erent values of m andu. u 1 2 3 4 5m1 4 5 6 7 82 { 7 8 9 103 { { 10 11 12Bhandari [1] looks at algorithms which correctly achieve interactive consistency [9]up to N�13 faults in an N node system. Bhandari proves that graceful degradations is3

impossible with such algorithms if the number of faults is more than N=3. His result is notapplicable to m=u-degradable agreement when m < N�13 . Although Bhandari's result seemsto contradict our results when m < u � m+2 and N = 2m+ u+1, it should be noted thathis result applies to interactive consistency and not Byzantine agreement (even though thetwo problems are closely related). Interactive consistency requires each node to agree on avector of N values containing one value sent by each node in the system [9].Proof of correctness for the m=u-degradable agreement algorithm presented in thisreport assumes that the clocks on all the fault-free nodes are synchronized. It is known thatif a third (or more) of the clocks are faulty, it is not possible to achieve clock synchronization[3, 5]. Section 6 discusses this issue.3 Motivation: Forward and Backward RecoveryConsider a fault tolerant system consisting of multiple computation channels. Figure 1(a)illustrates a system with three channels. Byzantine agreement is useful in such systemsto distribute information from a single sender (for example, a sensor) to all the channels[11]. The three channels in Figure 1(a) obtain their input from the sensor and then perform
voter
3-out-of-4

voter
2-out-of-3

Sender Sender

to external entity to external entity

(a) (b)

voter
3-out-of-4

voter
2-out-of-3

Sender Sender

to external entity to external entity

(a) (b)

4321321

voter
3-out-of-4

voter
2-out-of-3

Sender Sender

to external entity to external entity

(a) (b)Figure 1: Multiple channel systemscomputations on that input. Eventually, the output of the three channels must be sent to4

an external entity (for example, to a controller). The external entity takes a majority voteon the output of the three channels and determines the correct value. It is clear that if thesender is itself faulty, the external entity may not be able to obtain the correct value. Thus,in such a system, Byzantine agreement [7] ensures the following conditions:(B.1) Given is a system with 3m channels and 1 sender. If the sender is fault-free and atmost m channels are faulty, then the external entity obtains the correct value usingmajority vote.(B.2) All the fault-free channels are in an identical state, up to m faults.Although the proposed approach is useful when multiple senders measure the samequantity and send its value to the channels, the discussion in this report is limited to a singlesender. The three-channel system in the above example may fail, if two of the channelsobtained the same incorrect value from the sender. This could happen if two nodes out offour (three channels and one sender) are faulty, as Byzantine agreement with four nodes onlytolerates one fault. In general, if more than m faults occur, Byzantine agreement may resultin the external entity using an incorrect output, even if the sender is fault-free. However,Byzantine agreement tolerates up to m faults, meaning that forward recovery [10] can beperformed in the presence of up to m faults.The concept of a default value is pertinent to the discussion below. If the externalentity obtains a default value from the multiple channel system, it can take a \default" actionwhich usually results in a safe operation. Another possibility is to re-do the computation(backward recovery [10]).Degradable agreement improves the ability to survive more than m faults. Obvi-ously, achieving this requires more resources, but we show that the increase in resourcerequirements is minimal. Consider a four channel system shown in Figure 1(b). For thissystem, m = 1 and u = 2. Using the proposed degradable agreement approach the followingconditions can be ensured as compared to those listed above for Byzantine agreement.(C.1) Given is a system with (2m+u) channels and 1 sender (m � u). If the sender is fault-free and at most m channels are faulty, then the external entity obtains the correct5

value using (m+ u)-out-of-(2m + u) vote2 on the outputs of the 2m + u channels.(C.2) If the sender is fault-free and more than m but at most u channels are faulty, thenthe external entity obtains either the correct value or the default value.(C.3) The fault-free channels are all in an identical state if number of faults is at most m.Also, up to u faults, the fault-free channels are divided into at most two classes; thechannels in one class are in a \default" state (i.e. a safe state).It is clear that in many situations, it is safer to use the default value as comparedto an incorrect value. For instance, if a controller in a
y-by-wire system receives a defaultvalue from the computer, as a safety precaution it can inform the pilot of the problem.Condition C.2 results in a correct or default output even when more than a third ofthe channels may be faulty. Condition C.1 is essentially the same as B.1. Thus, by conditionC.2, the degradable agreement approach improves the ability to survive a larger number offaults. Also, conditions C.2 and C.3 ensure that the state of the fault-free channels divergesgracefully.The above discussion motivates the proposed degradable agreement approach. Theproposed approach, in general, improves the safety of the system and also improves theability of the system to perform backward recovery in the presence of more than m faults.Similar to Byzantine agreement, degradable agreement can perform forward recovery up tom faults.4 An Algorithm for m=u-Degradable AgreementThis section presents an algorithm to prove that m=u-degradable agreement can be achievedwith more than (2m+ u) nodes. No attempt is made here to present an e�cient algorithm.It is assumed that Vd is a default value that is distinguishable from other values.De�ne VOTE(�; �) of � values w1; w2; � � �w� as � if at least � of the � values are equal2(m + u)-out-of-(2m+ u) vote of 2m+ u values is � if � (m + u) values are �, default value otherwise.6

to �, else VOTE(�; �) is de�ned to be the default value Vd. Also, in case of a tie, de�neVOTE(�; �) = Vd. For example, VOTE(2,4) of values 1, 2, 2, 3 is 2 and VOTE(2,4) ofvalues 1, 2, 0, 3 is Vd. VOTE(2,4) of values 1, 2, 2, 1 is Vd because of the tie.Algorithm BYZ presented below may be viewed as an extension of an algorithm in[7]. BYZ assumes that the nodes are fully connected. Following assumptions are made re-garding messages when proving correctness of algorithm BYZ: (a) All messages are deliveredcorrectly, (b) absence of a message can be detected, and (c) source of a received messagecan be identi�ed. As discussed in Section 6, assumption (b) can be relaxed when more thanm faults exist.Algorithm BYZ is recursive. The algorithm for m = 0 is omitted here. AlgorithmBYZ(m;m) achieves m=u-degradable agreement given at least 2m + u + 1 nodes. Nowwe present BYZ(1;m) and BYZ(t;m). In these algorithms, the following notation is used.In BYZ(1;m), n is the number of nodes to which algorithm BYZ(1;m) is being applied.Similarly, in BYZ(t;m), n is the number of nodes to which algorithm BYZ(t;m) is beingapplied. N is the total number of nodes in the system. m and u are the two parameters thatde�ne the m=u-degradable agreement that we want to achieve in this system of N nodes.For BYZ(m;m), n = N . It is assumed that N > 2m + u and u � m > 0. It can be seenthat for BYZ(t;m), n = N �m+ t.Algorithm BYZ(1;m)1. The sender sends its value to all the (n� 1) receivers.2. Each receiver broadcasts the value it received from the sender to (n�2) other receivers.As there are (n� 1) receivers, each receiver now has (n� 1) values.3. Each receiver uses VOTE(n� 1 �m;n� 1) of these (n� 1) values.BYZ(1;m) is not recursive. Lemma 2 in Section 4.1 proves some properties of algo-rithm BYZ(1;m). 7

Algorithm BYZ(t;m), 1 < t � m1. The sender sends its value to all the (n� 1) receivers.2. For each i, let vi be the value receiver i received from the sender in step 1. Receiveri acts as the sender in algorithm BYZ(t � 1;m) to send the value vi to each of the(n� 2) other receivers.3. For receiver i, let wi = vi and for each j 6= i, let wj be the value receiver i receivedfrom receiver j in step 2 (using algorithm BYZ(t� 1;m)). Thus, receiver i now hasn� 1 values w1; w2; � � � ; wn�1. Receiver i uses VOTE(n� 1�m;n� 1) of these (n� 1)values.Algorithm BYZ(m;m) achieves m=u-degradable agreement if N > 2m+u, as provedbelow. Note that as the recursion unfolds in BYZ(m;m), the values of n and t change ateach level of the recursion, however, the value of m remains �xed.4.1 Proof of Correctness: Algorithm BYZThe correctness of algorithm BYZ is being proved assuming that the absence of a messagecan be correctly detected. Therefore, the following assumes that each node always sends amessage when it is supposed to. However, a faulty node may send an incorrect message.(Also see Section 6 for a related discussion). Assume that N > 2m+ u.Lemma 1 When BYZ(t;m) is called with t � 1;m � 1, the following conditions hold:(a) n > t+m+ u and (b) u < n� 1 �m.Proof: The proof is by induction on t. Initially when BYZ(m;m) is executed, t = m andn = N > 2m+ u = t+m+ u. Therefore, n > t+m+ u. Therefore, condition (a) holds fort = m.Now we assume that (a) holds for some t � m and show that it holds for t� 1. As(a) holds for t, we have n > t+m+ u. BYZ(t� 1;m) is called in step 2 of BYZ(t;m) with8

n � 1 nodes. As n > t + m + u, we have (n � 1) > (t � 1) +m + u. Thus, condition (a)holds for t� 1.Thus, condition (a) is proved. Condition (a) implies that u < n� t �m. As t � 1,this implies that u < n� 1�m. 2Lemma 2 Let f be the number of faulty nodes in the system. If n > 1 + u+m, then1. BYZ(1;m) satis�es condition D.1 if f � m.2. BYZ(1;m) satis�es condition D.2 if f = 1.3. BYZ(1;m) satis�es condition D.3 if m < f � u.4. BYZ(1;m) satis�es condition D.4 if m = 1 and 1 < f � u.Proof: Let n > 1 + u+m. f is the number of faulty nodes in the system.Case 1: f � m and the sender is fault-free.Assume that the fault-free sender sends value � to the receivers in step 1 of BYZ(1;m).In step 2, each fault-free receiver broadcasts � (the value received from the sender) to theother (n� 2) receivers. When these broadcasts are complete, each receiver will have (n� 1)values, of which at least (n � 1 �m) must be � (as at least n � 1 �m of the receivers arefault-free). Also, as n > 1+u+m and u � m, we have n� 1�m > m. Therefore, no valueother than � is received from any n� 1�m nodes. Therefore, each fault-free node obtains� in step 3 of BYZ(1;m). Thus, item 1 in the lemma is proved.Case 2: f = 1 and the sender is faulty.In this case all the receivers are fault-free. Therefore, in step 2 of BYZ(1;m), eachreceiver must obtain the same set of n� 1 values. This implies that in step 3, each receiverwill obtain the same value using VOTE(n � 1 �m;n � 1). Thus, item 2 in the lemma isproved. 9

Case 3: m < f � u and the sender is fault-free.Assume that the sender sends value � to the receivers in step 1 of BYZ(1;m). Eachfault-free receiver broadcasts the value received from the sender to the other n�2 receivers.When these broadcasts are complete, each receiver will have n� 1 values of which at leastn�1�umust be � as at least n�1�u receivers are fault-free. By Lemma 1, n�1�m> u.Therefore, a fault-free receiver must obtain VOTE(n� 1�m;n� 1) equal to either � or Vd.Thus, item 3 in the lemma is proved.Case 4: m = 1, 1 < f � u and the sender is faulty.As m = 1, we have n > 2 + u. At the end of step 2, each fault-free receiver obtains aset of n� 1 values. As the sender is faulty, at least n� u receivers are fault-free. Therefore,at least n�u of the n�1 values obtained by a fault-free receiver (in step 2) must be identicalto those obtained by all the fault-free receivers.Now, any two subsets containing n�1�m (= n�2) receivers out of the n�1 receiversmust contain at least one fault-free receiver in common. (To see this note that, if there weretwo subsets containing at least n� 2 receivers each with no fault-free receivers in common,then the total number of receivers must be at least (n�2)+(n�2)� (u�1) � n. But thereare only n� 1 receivers.). Therefore, if a fault-free receiver obtains VOTE(n� 2; n � 1) =�, � 6= Vd, then any other fault-free receiver must obtain VOTE(n�2; n�1) equal to either� or Vd. Thus, item 4 in the lemma is proved. 2Condition (a) of Lemma 1 implies that the condition n > 1 + u + m required forLemma 2 to be true is satis�ed by BYZ(1;m).Lemmas 3 through 6 below prove that BYZ(m;m) achieves m=u-degradable agree-ment. The proofs of these lemmas assume that: (i) m > 1, (ii) N > 2m + u and (iii)u � m > 0.Lemma 3 For 1 � t � m, algorithm BYZ(t;m) satis�es condition D.1 if n > t + u + mand at most m nodes are faulty. 10

Proof: By Lemma 1, n > t+ u+m. Also, it is given that u � m.The proof is by induction on t. The number of faulty nodes is at most m. ConditionD.1 assumes that the sender is fault-free. Therefore, the lemma is true for t = 1 by Lemma 2.We now assume that the lemma is true for BYZ(t � 1;m) where 2 � t � m, andprove it for BYZ(t;m). In step 1 of BYZ(t;m), the fault-free sender sends a value, say �, toall the (n� 1) receivers. In step 2, each fault-free receiver acts as a sender in BYZ(t� 1;m)to send value � (which it received from the sender) to the other (n � 2) receivers. Asn > t + u + m, (n � 1) > (t � 1) + u + m. Therefore, the induction hypothesis holds forBYZ(t � 1;m). Thus, at the end of step 2, every fault-free receiver gets wj = � for eachfault-free receiver j. Since there are at most m faulty receivers, at least n � 1 � m arefault-free. Therefore, each fault-free receiver i has wj = � for at least (n � 1 � m) of then � 1 receivers. As m � u < n � 1 � m (by Lemma 1), this implies that each fault-freereceiver obtains VOTE(n� 1�m;n� 1) = �. Thus, the lemma is proved for BYZ(t;m). 2Lemma 4 For 1 � t � m, algorithm BYZ(t;m) satis�es condition D.2 if n > t + u + mand at most t nodes are faulty.Proof: The proof is by induction on t. By Lemma 2, BYZ(1;m) satis�es condition D.2if at most 1 node is faulty. We therefore assume that the lemma is true for BYZ(t� 1;m)where 2 � t � m, and prove it for BYZ(t;m).The number of faulty nodes is at most t. Condition D.2 assumes that the sender isfaulty. Therefore, at most (t � 1) of the receivers are faulty. As n > t + u +m, (n � 1) >(t� 1) + u+m. In step 2, a receiver uses BYZ(t� 1;m) to send the value it received fromthe sender to the other n� 2 receivers. As at most t� 1 of the n� 1 receivers are faulty, wecan apply the induction hypothesis to conclude that BYZ(t� 1;m) satis�es condition D.2.As t � m, by Lemma 3, it follows that BYZ(t� 1;m) satis�es condition D.1 as well. Hence,any two fault-free receivers must obtain the same vector w1; w2; � � � ; wn�1 and therefore mustobtain the same value VOTE(n� 1�m;n� 1). Thus, the lemma is proved for BYZ(t;m).211

Lemma 5 For 1 � t � m, algorithm BYZ(t;m) satis�es condition D.3 if n > t + u + mand more than m but at most u nodes are faulty.Proof: The proof is by induction on t. Condition D.3 assumes that the sender is fault-free. By Lemma 2, BYZ(1;m) satis�es condition D.3 if at most u nodes are faulty. Wetherefore assume that the lemma is true for BYZ(t� 1;m) where 2 � t � m, and prove itfor BYZ(t;m).In step 1 of BYZ(t;m), the fault-free sender sends a value, say �, to all the (n � 1)receivers. In step 2, each fault-free receiver applies BYZ(t� 1;m) with (n � 1) nodes. Asn > t+ u+m, (n� 1) > (t� 1) + u+m. Therefore, we can apply the induction hypothesisto conclude that every fault-free receiver gets wj = � or Vd for each fault-free receiver j.Since at most u receivers are faulty, at least n � 1 � u of the n � 1 values received by anyfault-free receiver must be � or Vd. Now, u < n � 1 � m by Lemma 1. Therefore, eachfault-free receiver must obtain VOTE(n� 1�m;n� 1) equal to either � or Vd. Thus, thelemma is proved for BYZ(t;m). 2Lemma 6 Algorithm BYZ(m;m) satis�es condition D.4 if more than m but at most u nodesare faulty and n > 2m+ u.Proof: Condition D.4 assumes that the number of faulty nodes is at most u and thesender is faulty. Therefore, at most (u � 1) of the receivers are faulty. For BYZ(m;m),n = N > 2m+ u.In step 2 of BYZ(m;m), each fault-free receiver sends the value it received (from thesender) to the other n�2 receivers using BYZ(m�1;m). As n > 2m+u, (n�1) > (m�1)+u+m. Therefore, by Lemma 5, we know that BYZ(m� 1;m) satis�es condition D.3. As atmost u�1 receivers are faulty, at least n�u are fault-free. Without loss of generality, assumethat receivers 1 through n�u are fault-free. vj is the value fault-free receiver j received fromthe sender in step 1 of BYZ(m;m). Therefore, at the end of step 2, each fault-free receivermust obtain a vector of n�1 values of the form (v1=Vd; v2=Vd; � � � ; vn�u=Vd;X; � � � ;X), where12

vj=Vd indicates that the corresponding value is either vj or Vd, and X denotes a value thatis not relevant in our discussion here.Now, suppose that in step 3 of BYZ(m;m), a fault-free receiver i obtains VOTE(n�1 � m;n � 1) = � where � 6= Vd. This implies that, for fault-free receiver i, at least(n� 1�m)� (u� 1) = n�m�u of the �rst n�u values in the vector of n� 1 values mustbe �. As n = N , n �m � u � m+ 1. This implies that at least m + 1 fault-free receiversreceived � from the sender in step 1. Therefore, each fault-free receivermust have (at the endof step 2 of BYZ(m;m)) at least m+1 values that are � or Vd. Thus, VOTE(n�1�m;n�1)cannot be any value other than � and Vd. Thus, the lemma is proved. 2Theorem 1 BYZ(m;m) achieves m=u-degradable agreement if N > 2m+ u.Proof: For m = 1, the proof follows from Lemma 2. For m > 1, the proof follows fromLemma 1 and from Lemmas 3 through 6 by choosing t = m. 25 Lower Bounds for Degradable AgreementThis section presents the lower bounds on the number of nodes and the network connectivitynecessary to achieve m=u-degradable agreement. For future reference note that, by de�ni-tion, a system that achieves m=u-degradable agreement also achieves Byzantine agreement[7] up to m faults.Theorem 2 Given N nodes, m=u-degradable agreement can be achieved only if N > 2m+u.Proof: The proof is in two parts. Part I proves that 1/2-degradable agreement is impos-sible with less than 5 nodes. Part II extends this result to prove the theorem in general.Part I: It is clear that the number of nodes must be at least 4, else Byzantine agreementwith 1 fault cannot be achieved. Therefore, assume that 1/2-degradable agreement can beachieved in a system of 4 nodes. Let the nodes be named S, A, B and C, where S is the sender13

node. Figures 2(a) through (c) illustrate three fault scenarios; the shaded nodes are faulty.In the following, let � and � be two di�erent values distinct from Vd, i.e., Vd 6= � 6= � 6= Vd.
S S S

A B C A B C A B C

β
β

β

α β β

α β β α α
α

α β βα β β

(a) (b) (c)Figure 2: Proving lower bound on the number of nodesIn scenario (a), only node A is faulty. Also, in scenario (a), let the sender's valuebe �. Therefore, by condition D.1, fault-free nodes B and C must agree on �. The arcs inFigure 2(a) indicate the values sent by S to the other nodes. Value � written below nodeB (C) in the �gure indicates that node B (C) may tell the other receivers that the sendersent him �. Value � written below node A indicates that node A pretends to have received� from sender S. As node A is faulty, such a behavior is possible.In scenario (b), only sender node S is faulty. Also, the faulty sender S sends � tonode A and � to nodes B and C, as indicated in Figure 2(b). As node S is faulty, such abehavior is possible. Now, fault-free node B cannot distinguish between scenarios (a) and(b). As seen above, in scenario (a), node B agrees on �. Hence, in scenario (b) also node Bmust agree on �. Therefore, by condition D.2, nodes A and C too must agree on �.In scenario (c), nodes B and C are faulty. Also, let the sender's value be �. Addition-ally, in scenario (c) assume that faulty nodes B and C pretend that they received value �from the sender, as illustrated in Figure 2(c). Now, fault-free node A cannot distinguish be-tween scenarios (b) and (c). We have already concluded that node A agrees on � in scenario(b). Therefore, A must agree on � in scenario (c) as well. However, condition D.3 requiresthat fault-free node A should agree on either � or Vd in scenario (c). As � 6= � 6= Vd, this isa contradiction. 14

Thus, 1/2-degradable agreement cannot be achieved with less than 5 nodes.Part II: The proof in Part II is similar to a proof in [7]. It is clear that to achieve m=u-degradable agreement at least 3m + 1 nodes are necessary (otherwise Byzantine agreementcannot be achieved for m faults). Therefore, consider a system consisting of N nodes suchthat N = 3m+ � where 1 � � � (u�m). Thus, N � 2m + u. Also, m + � � u. Assumethat m=u-degradable agreement can be achieved in this system.Divide the 3m+� nodes into four groups such that three groups containm nodes eachand the fourth group contains � nodes. Name the three groups containing m nodes each asSm, Am and Bm, where Sm is the group that contains the sender node. The group containing� nodes is named C�. Now, assume that the four node system in Figure 2 simulates the3m + � node system; nodes S, A, B and C in Figure 2 simulate the nodes in Sm, Am, Bmand C�, respectively. Node A agrees on value � only if all the nodes in Am agree on value� (similarly for S, B and C). Also, if node A is faulty, then all the nodes in Am are faulty(similarly for S, B and C). Now, as the 3m+ � node system can achieve m=u-agreement, itshould be able to reach correct agreement in all the three fault scenarios corresponding tothose illustrated in Figure 2. But that is an impossibility as shown in Part I. 2As proved by the correctness of algorithm BYZ, 2m + u + 1 nodes are not onlynecessary but also su�cient to achieve m=u-degradable agreement.Theorem 3 Given N nodes, m=u-degradable agreement can be achieved only if the networkconnectivity is at least m+ u+ 1.Proof: Instead of a formal proof, a sketch is presented. This sketch is similar to the proofof the lower bound for Crusader agreement in [2].Let G be the network of nodes under consideration. Let the connectivity of G be� � m+u. It is clear that � must be at least 2m+1, otherwise even Byzantine agreement isnot possible with m faults. Thus, 2m < � � m+u. Assume that m=u-degradable agreementcan be achieved in this system. 15

Consider the following scenario. Let F = fa1; a2; � � � ; a�g be a set of nodes which candisconnect the network into two non-empty parts G1 and G2. Let F1 = fa1; � � � ; amg andF2 = fam+1; � � � ; a�g. Thus, F1 [F2 = F and F1 \F2 = ;. Also jF1j = m and m < jF2j � u.Assume that the sender is in G1. Let the sender be fault-free and its value be �. Letthe nodes in F1 be all faulty and let all other nodes be fault-free. The faulty nodes in F1change each message from G1 to G2 to carry value � (where � 6= � 6= Vd) and change eachother message to carry value �. Now, by condition D.1, m=u-degradable agreement requiresthat in this fault scenario, the nodes in G2 must agree on �. Now, the nodes in G2 cannotdi�erentiate between the above scenario from the following scenario: All the nodes in G1including the sender are fault-free, the sender's value is �, and the nodes in F2 are faulty.In this second fault scenario, as m < jF2j � u, by condition D.3, the nodes in G2 must agreeon either � or Vd. Thus, the two scenarios require the nodes in G2 to agree on two di�erentvalues, causing a contradiction. 2It turns out that connectivity of m + u + 1 is not only necessary but also su�cientto achieve m=u-degradable agreement in a system of more than 2m+ u nodes.6 Message Passing and Clock SynchronizationThe most critical implementation issue is that of clock synchronization. In order to ensurethat the absence of a message can be detected, it is necessary to synchronize the clocks ofall the fault-free nodes. However, it has been shown that clock synchronization cannot beachieved if a third (or more) clocks are faulty [3, 5]. When using m=u-degradable agreement,u may be larger than a third of the number of nodes. Thus, clock synchronization cannot beguaranteed if a node being faulty necessarily implies that its clock is faulty as well. Thereare two approaches to deal with this problem, as discussed in the following two subsections.6.1 Degradable Clock SynchronizationFor brevity, the proof of correctness for algorithm BYZ assumed that the absence (andpresence) of messages can be correctly detected up to u faults. However, it is possible to16

prove the correctness of algorithm BYZ under the following relaxed conditions as well.1. When at most m nodes are faulty, absence and presence of messages is detected cor-rectly. (This requires clock synchronization).2. When more than m but at most u nodes are faulty, a fault-free node may incorrectlydeclare a message from another fault-free node to be absent. (This may happen dueto time-outs).The above conditions can be satis�ed provided the clocks of fault-free nodes are synchronizedup to m faults. This is achievable, as N3 > 2m+u3 � m. The above implies correctness of thealgorithm in the sense that m=u-degradable agreement is achieved whenever the algorithmterminates. However, in the absence of clock synchronization with more than m faults, thealgorithm is not (yet) guaranteed to complete within bounded time.Termination within bounded time can be guaranteed with more than m faults if oneof the following is true: (i) at least m+1 fault free nodes have their clocks synchronized, or(ii) at least m+1 fault-free nodes detect the presence of more than m faulty nodes. Keepingthese conditions in mind, we introduce the following problem.m=u-Degradable Clock Synchronization:1. if at mostm clocks are faulty, all the fault-free clocks must be synchronized and should\approximate" the real time.2. if more than m but at most u clocks are faulty then, either� at least m+1 fault-free clocks must be synchronized and should approximate thereal time, or� at least m+1 fault-free clocks should detect the existence of more than m faultyclocks.We conjecture that m=u-degradable clock synchronization can be achieved with more than2m + u clocks. Motivation for this conjecture is the observation in Section 2 that, given17

2m+ u+1 nodes, if at most u nodes are faulty, at least m+1 fault-free nodes agree on thesame value usingm=u-degradable agreement. This conjecture is being investigated currently.The reader can verify that the impossibility result in [5] does not as such apply to the aboveproblem.6.2 Traditional Clock SynchronizationOne solution, applicable to systems such as FTMP, NETS [11] and FTP [4], is the use ofhardware clock synchronization (as opposed to software algorithms). In typical systems,the complexity and cost of clock hardware is orders of magnitude lower as compared to theprocessor (or node) complexity. Therefore, the failure rates for clock hardware are likely tobe signi�cantly lower. Therefore, one may assume that at most a third of the clocks mayfail (although more than a third of the processors may fail). In such a case the term \nodefailure" in our discussion refers to the failure of the processor. Essentially, a processor beingfaulty does not necessarily imply that the associated clock hardware is faulty as well. Forexample, in Figure 1(b), we may assume that at most one clock may be faulty, while using1=2-degradable agreement for the processors. Such an assumption is not likely to a�ect theoverall system reliability or safety adversely as the clock failure rates are much lower thanprocessor failure rates. Also, as clock complexity is lower, it is possible to use conservativedesigns to further lower the failure rates.Another approach is to use more clocks than the number of processors. For example,for the system in Figure 1(b), one may use two more clocks in addition to those associateedwith each of the nodes, making the system capable of tolerating two clock failures. Additionof clocks can be used to make the system capable of tolerating up to � clock failures, for some�, m < � � u. This idea is analogous to the concept of witnesses proposed for maintainingconsistency in replicated �le systems [8]. 18

7 Summarym=u-degradable agreement protocol that achieves Lamport's Byzantine agreement [7] upto m faults, and a degraded form of agreement with more than m but at most u faults isproposed. Up to m faults, all the fault-free nodes agree on an identical value. For morethan m faults (up to u faults), the degraded form of agreement allows the fault-free nodes toagree on at most two di�erent values one of which is necessarily the default value; the othervalue is the sender's value if the sender is fault-free. It is shown that at least 2m + u + 1nodes and network connectivity of at leastm+u+1 are necessary to achievem=u-degradableagreement. Also, an m=u-degradable agreement algorithm is presented for more than 2m+unodes. The results presented in this report suggest that degradable agreement is a cost-e�ective approach for tolerating a small number of Byzantine failures using forward recoveryand a large number of failures using backward recovery. Further research is required toexplore the applications of degradable agreement.The report also formulates the problem of degradable clock synchronization. Thisproblem is under investigation presently.References[1] I. S. Bhandari, \On the graceful degradation of byzantine agreement," Master's thesis,University of Massachusetts-Amherst, September 1985.[2] D. Dolev, \The Byzantine generals strike again," J. Algo., pp. 14{30, 1982.[3] D. Dolev, J. Y. Halpern, and H. R. Strong, \On the possibility and impossibility ofachieving clock synchronization," J. Computer and System Sciences, vol. 32, pp. 230{250, 1986.[4] R. E. Harper, J. H. Lala, and J. J. Deyst, \Fault tolerant parallel processor architectureoverview," in Digest of papers: The 18th Int. Symp. Fault-Tolerant Comp., pp. 252{257,1988. 19

[5] C. M. Krishna and I. S. Bhandari, \On graceful degradation of phase locked clocks,"in IEEE Real-Time Systems Symposium, pp. 202{211, 1988.[6] L. Lamport, \The weak Byzantine generals problem," J. ACM, vol. 30, pp. 668{676,July 1983.[7] L. Lamport, R. Shostak, and M. Pease, \The Byzantine generals problem," ACM Trans.Prog. Lang. Syst., vol. 4, pp. 382{401, July 1982.[8] J.-F. Paris, \Voting with witnesses: A consistency scheme for replicated �les," in In-ternational Conf. Distributed Computing Systems, pp. 606{612, 1986.[9] M. Pease, R. Shostak, and L. Lamport, \Reaching agreement in the presence of faults,"J. ACM, pp. 228{234, April 1980.[10] D. P. Siewiorek and R. S. Swarz, The Theory and Practice of Reliable System Design.Digital Press, Bedford, MA, 1982.[11] T. B. Smith III et al., The Fault-Tolerant Multiprocessor Computer. Park Ridge, NJ:Noyes Publications, 1986.
20

