Degradable Agreement in the Presence of
Byzantine Faults

Nitin H. Vaidya

Technical Report # 92-020

Abstract

Consider a system consisting of a sender that wants to send a value to certain
receivers. Byzantine agreement protocols [7, 6, 2] have been proposed to achieve this
in the presence of arbitrary failures. The imposed requirement typically is that the
fault-free receivers must all agree on the same value [7, 6]. (Dolev [2] analyzes a
seemingly weaker form of agreement). It has been shown that such an agreement is
impossible if a third or more of the nodes are faulty [7, 6, 2].

We propose an agreement protocol that achieves Lamport’s Byzantine agreement
[7] up to a certain number of faults and a degraded form of agreement with a higher
number of faults. Essentially, the degraded form of agreement allows the fault-free
receivers to agree on at most two different values one of which is necessarily the de-
fault value. The default value is distinguishable from all other values. The proposed
approach is named “degradable agreement”. Specifically, m/u-degradable agreement
is defined using two parameters, m and wu, and the following four conditions. (The

term node refers to the sender and the receivers).

(1) If the sender is fault-free and at most m nodes are faulty, then all the fault-free

nodes must agree on the sender’s value.

(2) If the sender is faulty, and the number of faulty nodes is at most m, then all the

fault-free nodes must agree on an identical value.

(3) If the sender is fault-free, and the number of faulty nodes is more than m but
at most u, then the fault-free nodes may be partitioned into at most two classes.
The fault-free nodes in one of the classes must agree on the sender’s value, and

the fault-free nodes in the other class must all agree on the default value.

(4) If the sender is faulty, and the number of faulty nodes is more than m but at
most u, then the fault-free nodes may be partitioned into at most two classes.
The fault-free nodes in one of the classes must agree on the default value, and

the fault-free nodes in the other class must all agree on an identical value.

It is shown that at least 2m 44+ 1 nodes and network connectivity of at least m+u+1
are necessary to achieve m/u-degradable agreement. An m/u-degradable agreement
algorithm is presented for more than 2m+u nodes. Conditions (3) and (4) imply that,
up to u faults, at least m + 1 fault-free nodes are guaranteed to agree on the same

value.

1 Introduction

Consider a system consisting of a sender that wants to send a value to certain receivers.
Byzantine agreement (weak [6] or otherwise [7]) and Crusader agreement [2] protocols have
been proposed to achieve this in the presence of arbitrary (possibly malicious) failures. The
requirement is typically that the fault-free receivers must all agree on the same value [7, 6].
(Dolev [2] analyzes a seemingly weaker form of agreement). Prior work has shown that such
agreements are impossible if a third of the nodes (or more) are faulty. This report also

assumes the arbitrary failure model which is also known as the Byzantine failure model.

We propose an agreement protocol that achieves Lamport’s Byzantine agreement [7]
up to a certain number of failures and a degraded form of agreement with a higher number of
faults. Essentially, the degraded form of agreement allows the fault-free receivers to agree on
at most two different values one of which is necessarily the default value.! This is a degraded
form as compared to Byzantine agreement [7] which requires all the fault-free receivers to
agree on a single value. The proposed approach is named “degradable agreement”. The

next section presents a definition of degradable agreement.

This report shows that degradable agreement is of interest in practice. Also, it is
shown that degradable agreement provides an ability to achieve forward recovery as well as
backward recovery when the number of failures is large (more than a third of the nodes may

be faulty).

For the sake of simplicity, this report draws on and extends the concepts presented

in two well-known report by Lamport et al. [7] and Dolev [2].

Section 2 defines the proposed degradable agreement approach. Section 3 motivates
the proposed approach and discusses an application. An algorithm for achieving the pro-
posed agreement is presented in Section 4. Lower bounds on the number of nodes and
connectivity for the proposed form of agreement are presented in Section 5. The problem
addressed in this report suggests a degradable clock synchronization approach. Section 6

discusses the issue of clock synchronization. Section 7 summarizes the results.

!Default value, denoted Vj, is distinguishable from all other values.

2 Degradable Agreement Protocol

The system model can be described as follows. The system consists of a sender and some
receivers. The sender wants to send its value to the receivers. In the following, the term node
may refer to the sender or a receiver. A faulty node (sender or receiver) may demonstrate
arbitrary behavior. V; denotes the default value. The default value V; is assumed to be

distinguishable from all other relevant values.

Degradable agreement is defined using two parameters, m and u. Degradable agree-
ment defined by parameters m and w is hereafter called m/u-degradable agreement. An
m/u-degradable agreement protocol satisfies the following conditions, where f is the num-

ber of faulty nodes.

m/u-Degradable Agreement:

o if f < m, then conditions D.1 and D.2 below must be satisfied.

o if m < f < wu, then conditions D.3 and D.4 below must be satisfied.

(D.1) If the sender is fault-free, then all the fault-free receivers must agree on the sender’s

value.

(D.2) If the sender is faulty, then the fault-free receivers must agree on an identical value.

(D.3) If the sender is fault-free, then the fault-free receivers may be partitioned into at most
two classes. The fault-free receivers in one class must agree on the sender’s value, and

the fault-free receivers in the other class must all agree on the default value.

(D.4) If the sender is faulty, then the fault-free receivers may be partitioned into at most
two classes. The fault-free receivers in one class must agree on the default value, and

the fault-free receivers in the other class must all agree on an identical value.

Conditions D.1 and D.2 are identical to those satisfied by Lamport’s Byzantine agree-
ment [7]. Conditions D.3 and D.4 define degraded agreement and are applied in fault situa-

2

tions with more than m but at most u faults. Thus, when m = u, degradable agreement is

equivalent to Lamport’s Byzantine agreement.

Let N be the number of nodes in the system. Observe that, if N > 2m + u then
m/u-degradable agreement ensures (by conditions D.3 and D.4) that at least m+1 fault-free
nodes (including the sender) agree on an identical value, even when the number of faults
is more than m (but at most u). Thus graceful degradation can be achieved. Note that

graceful degradation is possible up to w faults even when u > N/3 only if we insist on

N-1

3 J In other words,

achieving Byzantine agreement only up to m faults for some m < {
the capability to achieve Byzantine agreement can be traded with the capability to achieve

degraded agreement up to a larger number of faults.

It is later proved that to achieve m/u-degradable agreement the system must consist
of at least 2m 4 v + 1 nodes (including the sender), and also that 2m + « + 1 nodes are
sufficient. Therefore, given a system consisting of 7 nodes, one may achieve one of the

following:

o 2/2-degradable agreement, or
o 1/4-degradable agreement, or

e 0/6-degradable agreement.

This illustrates the trade-off between Byzantine agreement and degraded agreement. The

following table lists the minimum number of nodes necessary for different values of m and

Uu.

- 7 8 9 10

u
m
114 5 6 7 8
2
3 |- - 10 11 12

Bhandari [1] looks at algorithms which correctly achieve interactive consistency [9]

up to % faults in an N node system. Bhandari proves that graceful degradations is

3

impossible with such algorithms if the number of faults is more than N/3. His result is not
applicable to m/u-degradable agreement when m < % Although Bhandari’s result seems
to contradict our results when m < v < m+2 and N = 2m 4+ u + 1, it should be noted that
his result applies to interactive consistency and not Byzantine agreement (even though the
two problems are closely related). Interactive consistency requires each node to agree on a

vector of N values containing one value sent by each node in the system [9].

Proof of correctness for the m/u-degradable agreement algorithm presented in this
report assumes that the clocks on all the fault-free nodes are synchronized. It is known that
if a third (or more) of the clocks are faulty, it is not possible to achieve clock synchronization

[3, 5]. Section 6 discusses this issue.

3 Motivation: Forward and Backward Recovery

Consider a fault tolerant system consisting of multiple computation channels. Figure 1(a)
illustrates a system with three channels. Byzantine agreement is useful in such systems
to distribute information from a single sender (for example, a sensor) to all the channels

[11]. The three channels in Figure 1(a) obtain their input from the sensor and then perform

Sender

0O Sender

3-out-of-4
voter

2-out-of -3
voter

to external entity

@ (b)

to external entity

Figure 1: Multiple channel systems

computations on that input. Eventually, the output of the three channels must be sent to

an external entity (for example, to a controller). The external entity takes a majority vote
on the output of the three channels and determines the correct value. It is clear that if the
sender is itself faulty, the external entity may not be able to obtain the correct value. Thus,

in such a system, Byzantine agreement [7] ensures the following conditions:

(B.1) Given is a system with 3m channels and 1 sender. If the sender is fault-free and at
most m channels are faulty, then the external entity obtains the correct value using

majority vote.

(B.2) All the fault-free channels are in an identical state, up to m faults.

Although the proposed approach is useful when multiple senders measure the same
quantity and send its value to the channels, the discussion in this report is limited to a single
sender. The three-channel system in the above example may fail, if two of the channels
obtained the same incorrect value from the sender. This could happen if two nodes out of
four (three channels and one sender) are faulty, as Byzantine agreement with four nodes only
tolerates one fault. In general, if more than m faults occur, Byzantine agreement may result
in the external entity using an incorrect output, even if the sender is fault-free. However,
Byzantine agreement tolerates up to m faults, meaning that forward recovery [10] can be

performed in the presence of up to m faults.

The concept of a default value is pertinent to the discussion below. If the external
entity obtains a default value from the multiple channel system, it can take a “default” action
which usually results in a safe operation. Another possibility is to re-do the computation

(backward recovery [10]).

Degradable agreement improves the ability to survive more than m faults. Obvi-
ously, achieving this requires more resources, but we show that the increase in resource
requirements is minimal. Consider a four channel system shown in Figure 1(b). For this
system, m = 1 and v = 2. Using the proposed degradable agreement approach the following

conditions can be ensured as compared to those listed above for Byzantine agreement.

(C.1) Given is a system with (2m +u) channels and 1 sender (m < u). If the sender is fault-

free and at most m channels are faulty, then the external entity obtains the correct

value using (m + u)-out-of-(2m + u) vote? on the outputs of the 2m + u channels.

(C.2) If the sender is fault-free and more than m but at most u channels are faulty, then

the external entity obtains either the correct value or the default value.

(C.3) The fault-free channels are all in an identical state if number of faults is at most m.
Also, up to u faults, the fault-free channels are divided into at most two classes; the

channels in one class are in a “default” state (i.e. a safe state).

It is clear that in many situations, it is safer to use the default value as compared
to an incorrect value. For instance, if a controller in a fly-by-wire system receives a default

value from the computer, as a safety precaution it can inform the pilot of the problem.

Condition C.2 results in a correct or default output even when more than a third of
the channels may be faulty. Condition C.1 is essentially the same as B.1. Thus, by condition
C.2, the degradable agreement approach improves the ability to survive a larger number of
faults. Also, conditions C.2 and C.3 ensure that the state of the fault-free channels diverges
gracefully.

The above discussion motivates the proposed degradable agreement approach. The
proposed approach, in general, improves the safety of the system and also improves the
ability of the system to perform backward recovery in the presence of more than m faults.
Similar to Byzantine agreement, degradable agreement can perform forward recovery up to

m faults.

4 An Algorithm for m/u-Degradable Agreement

This section presents an algorithm to prove that m/u-degradable agreement can be achieved

with more than (2m + u) nodes. No attempt is made here to present an efficient algorithm.

It is assumed that V; is a default value that is distinguishable from other values.

Define VOTE(u, v) of v values wq,wsq,---w, as « if at least p of the v values are equal

2(m + u)-out-of-(2m + u) vote of 2m + u values is « if > (m + u) values are «, default value otherwise.

to «a, else VOTE(p, v) is defined to be the default value V;. Also, in case of a tie, define
VOTE(u,v) = V4. For example, VOTE(2,4) of values 1, 2, 2, 3 is 2 and VOTE(2,4) of
values 1, 2, 0, 3 is V3. VOTE(2,4) of values 1, 2, 2, 1 is V; because of the tie.

Algorithm BYZ presented below may be viewed as an extension of an algorithm in
[7]. BYZ assumes that the nodes are fully connected. Following assumptions are made re-
garding messages when proving correctness of algorithm BYZ: (a) All messages are delivered
correctly, (b) absence of a message can be detected, and (c) source of a received message
can be identified. As discussed in Section 6, assumption (b) can be relaxed when more than
m faults exist.

Algorithm BYZ is recursive. The algorithm for m = 0 is omitted here. Algorithm
BYZ(m,m) achieves m/u-degradable agreement given at least 2m + u + 1 nodes. Now
we present BYZ(1,m) and BYZ(¢,m). In these algorithms, the following notation is used.
In BYZ(1,m), n is the number of nodes to which algorithm BYZ(1,m) is being applied.
Similarly, in BYZ(#,m), n is the number of nodes to which algorithm BYZ(¢,m) is being
applied. N is the total number of nodes in the system. m and u are the two parameters that
define the m/u-degradable agreement that we want to achieve in this system of N nodes.
For BYZ(m,m), n = N. It is assumed that N > 2m 4+ u and v > m > 0. It can be seen
that for BYZ(t,m),n = N —m + 1.

Algorithm BYZ(1,m)

1. The sender sends its value to all the (n — 1) receivers.

2. Each receiver broadcasts the value it received from the sender to (n—2) other receivers.

As there are (n — 1) receivers, each receiver now has (n — 1) values.

3. Each receiver uses VOTE(n — 1 —m,n — 1) of these (n — 1) values.

BYZ(1,m) is not recursive. Lemma 2 in Section 4.1 proves some properties of algo-

rithm BYZ(1, m).

Algorithm BYZ(t,m), 1 <t <m

1. The sender sends its value to all the (n — 1) receivers.

2. For each ¢, let v; be the value receiver ¢ received from the sender in step 1. Receiver
i acts as the sender in algorithm BYZ(t — 1,m) to send the value v; to each of the

(n — 2) other receivers.

3. For receiver 7, let w; = v; and for each j # ¢, let w; be the value receiver ¢ received
from receiver j in step 2 (using algorithm BYZ(¢ — 1, m)). Thus, receiver ¢ now has
n — 1 values wy, wq, - -+, w,_1. Receiver ¢ uses VOTE(n —1 —m,n — 1) of these (n — 1)

values.

Algorithm BYZ(m, m) achieves m /u-degradable agreement if N > 2m + u, as proved
below. Note that as the recursion unfolds in BYZ(m,m), the values of n and ¢ change at

each level of the recursion, however, the value of m remains fixed.

4.1 Proof of Correctness: Algorithm BYZ

The correctness of algorithm BYZ is being proved assuming that the absence of a message
can be correctly detected. Therefore, the following assumes that each node always sends a
message when it is supposed to. However, a faulty node may send an incorrect message.

(Also see Section 6 for a related discussion). Assume that N > 2m + u.

Lemma 1 When BYZ(t,m) is called with t > 1,m > 1, the following conditions hold:
(a)n>t4+m+uand (b)) u<n—1—m.

Proof: The proof is by induction on t. Initially when BYZ(m,m) is executed, t = m and
n=N>2m+u=t+m+u. Therefore, n >t + m + u. Therefore, condition (a) holds for
t=m.

Now we assume that (a) holds for some ¢ < m and show that it holds for t — 1. As
(a) holds for ¢, we have n > t + m +u. BYZ(t — 1,m) is called in step 2 of BYZ(, m) with

8

n —1 nodes. Asn >t+ m+ u, we have (n — 1) > ({ — 1) + m 4 u. Thus, condition (a)
holds for ¢ — 1.

Thus, condition (a) is proved. Condition (a) implies that v < n —t—m. Ast > 1,
this implies that v <n —1 —m. a

Lemma 2 Let f be the number of faulty nodes in the system. I[fn > 14+ u + m, then

1. BYZ(1,m) satisfies condition D.1 if f < m.
2. BYZ(1,m) satisfies condition D.2 if f = 1.
3. BYZ(1,m) satisfies condition D.3 if m < f < u.

4. BYZ(1,m) satisfies condition D.4 if m=1and 1< f < u.

Proof: Let n > 14 u+ m. fis the number of faulty nodes in the system.

Case 1: f < m and the sender is fault-free.

Assume that the fault-free sender sends value « to the receiversin step 1 of BYZ(1,m).
In step 2, each fault-free receiver broadcasts « (the value received from the sender) to the
other (n — 2) receivers. When these broadcasts are complete, each receiver will have (n — 1)
values, of which at least (n — 1 — m) must be « (as at least n — 1 — m of the receivers are
fault-free). Also, as n > 1 4+u+m and v > m, we have n — 1 —m > m. Therefore, no value
other than « is received from any n — 1 — m nodes. Therefore, each fault-free node obtains

a in step 3 of BYZ(1,m). Thus, item 1 in the lemma is proved.

Case 2: f =1 and the sender is faulty.

In this case all the receivers are fault-free. Therefore, in step 2 of BYZ(1,m), each
receiver must obtain the same set of n — 1 values. This implies that in step 3, each receiver
will obtain the same value using VOTE(n — 1 — m,n — 1). Thus, item 2 in the lemma is

proved.

Case 3: m < f < wu and the sender is fault-free.

Assume that the sender sends value « to the receivers in step 1 of BYZ(1,m). Each

fault-free receiver broadcasts the value received from the sender to the other n — 2 receivers.

When these broadcasts are complete, each receiver will have n — 1 values of which at least
n—1—wu must be « as at least n — 1 — u receivers are fault-free. By Lemma 1, n—1—m > u.
Therefore, a fault-free receiver must obtain VOTE(n — 1 —m,n — 1) equal to either o or V.

Thus, item 3 in the lemma is proved.

Case 4: m=1, 1 < f < w and the sender is faulty.

As m =1, we have n > 2 4+ u. At the end of step 2, each fault-free receiver obtains a
set of n — 1 values. As the sender is faulty, at least n — u receivers are fault-free. Therefore,
at least n—u of the n —1 values obtained by a fault-free receiver (in step 2) must be identical

to those obtained by all the fault-free receivers.

Now, any two subsets containing n—1—m (= n—2) receivers out of the n—1 receivers
must contain at least one fault-free receiver in common. (To see this note that, if there were
two subsets containing at least n — 2 receivers each with no fault-free receivers in common,
then the total number of receivers must be at least (n —2)4(n—2) — (u—1) > n. But there
are only n — 1 receivers.). Therefore, if a fault-free receiver obtains VOTE(n —2,n — 1) =
B, 3 # Vg, then any other fault-free receiver must obtain VOTE(n —2,n — 1) equal to either

B or V. Thus, item 4 in the lemma is proved. a

Condition (a) of Lemma 1 implies that the condition n > 1 + u 4+ m required for
Lemma 2 to be true is satisfied by BYZ(1,m).

Lemmas 3 through 6 below prove that BYZ(m,m) achieves m/u-degradable agree-
ment. The proofs of these lemmas assume that: (i) m > 1, (ii) N > 2m + u and (iii)
u>m > 0.

Lemma 3 For 1 <t < m, algorithm BYZ(t,m) satisfies condition D.1 if n > t+u+m

and at most m nodes are faulty.

10

Proof: By Lemma 1, n > ¢+ u 4+ m. Also, it is given that u > m.

The proof is by induction on £. The number of faulty nodes is at most m. Condition

D.1 assumes that the sender is fault-free. Therefore, the lemma is true for ¢ = 1 by Lemma 2.

We now assume that the lemma is true for BYZ(t — 1,m) where 2 < t < m, and
prove it for BYZ(¢,m). In step 1 of BYZ(¢, m), the fault-free sender sends a value, say «, to
all the (n — 1) receivers. In step 2, each fault-free receiver acts as a sender in BYZ(t — 1,m)
to send value a (which it received from the sender) to the other (n — 2) receivers. As
n>t+u+m,(n—1)>(—1)+u+ m. Therefore, the induction hypothesis holds for
BYZ(t — 1,m). Thus, at the end of step 2, every fault-free receiver gets w; = «a for each
fault-free receiver j. Since there are at most m faulty receivers, at least n — 1 — m are
fault-free. Therefore, each fault-free receiver ¢ has w; = « for at least (n — 1 — m) of the
n — 1 receivers. As m < u < n —1—m (by Lemma 1), this implies that each fault-free

receiver obtains VOTE(n —1 —m,n — 1) = a. Thus, the lemma is proved for BYZ(t,m). O

Lemma 4 For 1 <t < m, algorithm BYZ(t,m) satisfies condition D.2 if n > t+u+m

and at most t nodes are faulty.

Proof: The proof is by induction on ¢. By Lemma 2, BYZ(1,m) satisfies condition D.2
if at most 1 node is faulty. We therefore assume that the lemma is true for BYZ(t — 1,m)
where 2 <t < m, and prove it for BYZ(t, m).

The number of faulty nodes is at most {. Condition D.2 assumes that the sender is
faulty. Therefore, at most (¢ — 1) of the receivers are faulty. Asn >t+u+m, (n —1) >
(t—1)+u+m. In step 2, a receiver uses BYZ(t — 1,m) to send the value it received from
the sender to the other n — 2 receivers. As at most ¢ — 1 of the n — 1 receivers are faulty, we
can apply the induction hypothesis to conclude that BYZ(¢ — 1, m) satisfies condition D.2.
As t < 'm, by Lemma 3, it follows that BYZ(? — 1, m) satisfies condition D.1 as well. Hence,

any two fault-free receivers must obtain the same vector wy, ws, - -+, w,_; and therefore must
obtain the same value VOTE(n — 1 —m,n — 1). Thus, the lemma is proved for BYZ(t, m).
O

11

Lemma 5 For 1 <t < m, algorithm BYZ(t,m) satisfies condition D.3 if n > t+u+m

and more than m but at most u nodes are faulty.

Proof: The proof is by induction on ¢. Condition D.3 assumes that the sender is fault-
free. By Lemma 2, BYZ(1,m) satisfies condition D.3 if at most u nodes are faulty. We
therefore assume that the lemma is true for BYZ(t — 1, m) where 2 <t < m, and prove it

for BYZ(t,m).

In step 1 of BYZ(t,m), the fault-free sender sends a value, say «, to all the (n — 1)
receivers. In step 2, each fault-free receiver applies BYZ(t — 1,m) with (n — 1) nodes. As
n>t+u+m,(n—1)>(t—1)+u+m. Therefore, we can apply the induction hypothesis
to conclude that every fault-free receiver gets w; = a or V; for each fault-free receiver j.
Since at most u receivers are faulty, at least n — 1 — u of the n — 1 values received by any
fault-free receiver must be a or V;. Now, u < n — 1 — m by Lemma 1. Therefore, each
fault-free receiver must obtain VOTE(n — 1 — m,n — 1) equal to either a or V. Thus, the

lemma is proved for BYZ(t, m). O

Lemma 6 Algorithm BYZ(m,m) satisfies condition D.] if more than m but at most u nodes
are faulty and n > 2m + u.

Proof: Condition D.4 assumes that the number of faulty nodes is at most u and the
sender is faulty. Therefore, at most (v — 1) of the receivers are faulty. For BYZ(m,m),

n=N>2m -+ u.

In step 2 of BYZ(m, m), each fault-free receiver sends the value it received (from the
sender) to the other n—2 receivers using BYZ(m—1,m). Asn > 2m+u, (n—1) > (m—1)+
u 4 m. Therefore, by Lemma 5, we know that BYZ(m — 1, m) satisfies condition D.3. As at
most u—1 receivers are faulty, at least n —u are fault-free. Without loss of generality, assume

that receivers 1 through n —u are fault-free. v; is the value fault-free receiver j received from
the sender in step 1 of BYZ(m,m). Therefore, at the end of step 2, each fault-free receiver

must obtain a vector of n— 1 values of the form (vy/Vy,va/Vy, -+, v/ Vi, X, - -+, X)), where

12

v;/Vy indicates that the corresponding value is either v; or V;, and X denotes a value that

is not relevant in our discussion here.

Now, suppose that in step 3 of BYZ(m,m), a fault-free receiver ¢ obtains VOTE(n —
Il —m,n —1) = 8 where § # V,. This implies that, for fault-free receiver i, at least
(n—1—=m)—(u—1)=n—m—uof the first n — u values in the vector of n — 1 values must
be 8. Asn =N, n—m —u > m-+ 1. This implies that at least m + 1 fault-free receivers
received (3 from the sender in step 1. Therefore, each fault-free receiver must have (at the end
of step 2 of BYZ(m, m)) at least m+1 values that are 5 or V;. Thus, VOTE(n—1—m,n—1)

cannot be any value other than # and V;. Thus, the lemma is proved. a

Theorem 1 BYZ(m,m) achieves m/u-degradable agreement if N > 2m + u.

Proof: For m = 1, the proof follows from Lemma 2. For m > 1, the proof follows from

Lemma 1 and from Lemmas 3 through 6 by choosing t = m. O

5 Lower Bounds for Degradable Agreement

This section presents the lower bounds on the number of nodes and the network connectivity
necessary to achieve m/u-degradable agreement. For future reference note that, by defini-
tion, a system that achieves m/u-degradable agreement also achieves Byzantine agreement

[7] up to m faults.

Theorem 2 Given N nodes, m/u-degradable agreement can be achieved only if N > 2m+u.

Proof: The proof is in two parts. Part I proves that 1/2-degradable agreement is impos-

sible with less than 5 nodes. Part II extends this result to prove the theorem in general.

Part I: It is clear that the number of nodes must be at least 4, else Byzantine agreement
with 1 fault cannot be achieved. Therefore, assume that 1/2-degradable agreement can be

achieved in a system of 4 nodes. Let the nodes be named S, A, B and C, where S is the sender

13

node. Figures 2(a) through (c) illustrate three fault scenarios; the shaded nodes are faulty.
In the following, let @ and 3 be two different values distinct from V, i.e., V; # a # 5 #£ V.

5 @ A
@ So% Sev

@) (b) (©

Figure 2: Proving lower bound on the number of nodes

In scenario (a), only node A is faulty. Also, in scenario (a), let the sender’s value
be 3. Therefore, by condition D.1, fault-free nodes B and C must agree on 3. The arcs in
Figure 2(a) indicate the values sent by S to the other nodes. Value 8 written below node
B (C) in the figure indicates that node B (C) may tell the other receivers that the sender
sent him . Value a written below node A indicates that node A pretends to have received

« from sender S. As node A is faulty, such a behavior is possible.

In scenario (b), only sender node S is faulty. Also, the faulty sender S sends « to
node A and 3 to nodes B and C, as indicated in Figure 2(b). As node S is faulty, such a
behavior is possible. Now, fault-free node B cannot distinguish between scenarios (a) and
(b). As seen above, in scenario (a), node B agrees on 3. Hence, in scenario (b) also node B

must agree on 3. Therefore, by condition D.2, nodes A and C too must agree on f.

In scenario (c), nodes B and C are faulty. Also, let the sender’s value be . Addition-
ally, in scenario (c) assume that faulty nodes B and C pretend that they received value /3
from the sender, as illustrated in Figure 2(c). Now, fault-free node A cannot distinguish be-
tween scenarios (b) and (c). We have already concluded that node A agrees on 3 in scenario
(b). Therefore, A must agree on 3 in scenario (c) as well. However, condition D.3 requires
that fault-free node A should agree on either a or V; in scenario (¢). As a # 3 # Vq, this is

a contradiction.

14

Thus, 1/2-degradable agreement cannot be achieved with less than 5 nodes.

Part II: The proof in Part II is similar to a proof in [7]. It is clear that to achieve m/u-
degradable agreement at least 3m + 1 nodes are necessary (otherwise Byzantine agreement
cannot be achieved for m faults). Therefore, consider a system consisting of N nodes such
that N = 3m + p where 1 < p < (v —m). Thus, N < 2m + u. Also, m + p < u. Assume

that m/u-degradable agreement can be achieved in this system.

Divide the 3m+ p nodes into four groups such that three groups contain m nodes each
and the fourth group contains g nodes. Name the three groups containing m nodes each as
Smy A and B,,, where S, is the group that contains the sender node. The group containing
p nodes is named C,. Now, assume that the four node system in Figure 2 simulates the
3m + p node system; nodes S5, A, B and C in Figure 2 simulate the nodes in S,,, A,,, By,
and C,, respectively. Node A agrees on value « only if all the nodes in A,, agree on value
a (similarly for S, B and C). Also, if node A is faulty, then all the nodes in A,, are faulty
(similarly for S, B and C). Now, as the 3m + g node system can achieve m/u-agreement, it
should be able to reach correct agreement in all the three fault scenarios corresponding to

those illustrated in Figure 2. But that is an impossibility as shown in Part I. a

As proved by the correctness of algorithm BYZ, 2m + u 4+ 1 nodes are not only

necessary but also sufficient to achieve m/u-degradable agreement.

Theorem 3 Given N nodes, m/u-degradable agreement can be achieved only if the network

connectivity is at least m + u + 1.

Proof: Instead of a formal proof, a sketch is presented. This sketch is similar to the proof

of the lower bound for Crusader agreement in [2].

Let G be the network of nodes under consideration. Let the connectivity of GG be
k < m+u. It is clear that kK must be at least 2m + 1, otherwise even Byzantine agreement is
not possible with m faults. Thus, 2m < £ < m+u. Assume that m/u-degradable agreement

can be achieved in this system.

15

Consider the following scenario. Let F' = {ay, a9, -, a,} be a set of nodes which can

disconnect the network into two non-empty parts Gy and Gy. Let Fy = {a1, -+, a,} and

Fy=A{any1, - ,as}. Thus, F{UF, = Fand FiNF, = 0. Also |Fi| = m and m < |Fy| < w.

Assume that the sender is in ;. Let the sender be fault-free and its value be o. Let
the nodes in F7 be all faulty and let all other nodes be fault-free. The faulty nodes in F}
change each message from G to (i3 to carry value 8 (where a # 3 # V) and change each
other message to carry value a. Now, by condition D.1, m/u-degradable agreement requires
that in this fault scenario, the nodes in G3 must agree on a. Now, the nodes in (G5 cannot
differentiate between the above scenario from the following scenario: All the nodes in G4
including the sender are fault-free, the sender’s value is 3, and the nodes in F; are faulty.
In this second fault scenario, as m < |Fy| < u, by condition D.3, the nodes in G; must agree
on either 3 or V. Thus, the two scenarios require the nodes in (G5 to agree on two different

values, causing a contradiction. O

It turns out that connectivity of m + u + 1 is not only necessary but also sufficient

to achieve m/u-degradable agreement in a system of more than 2m 4 u nodes.

6 Message Passing and Clock Synchronization

The most critical implementation issue is that of clock synchronization. In order to ensure
that the absence of a message can be detected, it is necessary to synchronize the clocks of
all the fault-free nodes. However, it has been shown that clock synchronization cannot be
achieved if a third (or more) clocks are faulty [3, 5]. When using m /u-degradable agreement,
u may be larger than a third of the number of nodes. Thus, clock synchronization cannot be
guaranteed if a node being faulty necessarily implies that its clock is faulty as well. There

are two approaches to deal with this problem, as discussed in the following two subsections.

6.1 Degradable Clock Synchronization

For brevity, the proof of correctness for algorithm BYZ assumed that the absence (and

presence) of messages can be correctly detected up to u faults. However, it is possible to

16

prove the correctness of algorithm BYZ under the following relaxed conditions as well.

1. When at most m nodes are faulty, absence and presence of messages is detected cor-

rectly. (This requires clock synchronization).

2. When more than m but at most v nodes are faulty, a fault-free node may incorrectly
declare a message from another fault-free node to be absent. (This may happen due

to time-outs).

The above conditions can be satisfied provided the clocks of fault-free nodes are synchronized
up to m faults. This is achievable, as % > Zm% > m. The above implies correctness of the

algorithm in the sense that m/u-degradable agreement is achieved whenever the algorithm
terminates. However, in the absence of clock synchronization with more than m faults, the

algorithm is not (yet) guaranteed to complete within bounded time.

Termination within bounded time can be guaranteed with more than m faults if one
of the following is true: (i) at least m + 1 fault free nodes have their clocks synchronized, or
(ii) at least m + 1 fault-free nodes detect the presence of more than m faulty nodes. Keeping

these conditions in mind, we introduce the following problem.

m/u-Degradable Clock Synchronization:

1. if at most m clocks are faulty, all the fault-free clocks must be synchronized and should

“approximate” the real time.
2. if more than m but at most u clocks are faulty then, either

o at least m + 1 fault-free clocks must be synchronized and should approximate the

real time, or

o at least m + 1 fault-free clocks should detect the existence of more than m faulty

clocks.

We conjecture that m/u-degradable clock synchronization can be achieved with more than

2m + u clocks. Motivation for this conjecture is the observation in Section 2 that, given

17

2m + u + 1 nodes, if at most u nodes are faulty, at least m + 1 fault-free nodes agree on the
same value using m/u-degradable agreement. This conjecture is being investigated currently.
The reader can verify that the impossibility result in [5] does not as such apply to the above

problem.

6.2 Traditional Clock Synchronization

One solution, applicable to systems such as FTMP, NETS [11] and FTP [4], is the use of
hardware clock synchronization (as opposed to software algorithms). In typical systems,
the complexity and cost of clock hardware is orders of magnitude lower as compared to the
processor (or node) complexity. Therefore, the failure rates for clock hardware are likely to
be significantly lower. Therefore, one may assume that at most a third of the clocks may
fail (although more than a third of the processors may fail). In such a case the term “node
failure” in our discussion refers to the failure of the processor. Essentially, a processor being
faulty does not necessarily imply that the associated clock hardware is faulty as well. For
example, in Figure 1(b), we may assume that at most one clock may be faulty, while using
1/2-degradable agreement for the processors. Such an assumption is not likely to affect the
overall system reliability or safety adversely as the clock failure rates are much lower than
processor failure rates. Also, as clock complexity is lower, it is possible to use conservative

designs to further lower the failure rates.

Another approach is to use more clocks than the number of processors. For example,
for the system in Figure 1(b), one may use two more clocks in addition to those associateed
with each of the nodes, making the system capable of tolerating two clock failures. Addition
of clocks can be used to make the system capable of tolerating up to p clock failures, for some
w, m < g < u. This idea is analogous to the concept of witnesses proposed for maintaining

consistency in replicated file systems [8].

18

7 Summary

m/u-degradable agreement protocol that achieves Lamport’s Byzantine agreement [7] up
to m faults, and a degraded form of agreement with more than m but at most u faults is
proposed. Up to m faults, all the fault-free nodes agree on an identical value. For more
than m faults (up to u faults), the degraded form of agreement allows the fault-free nodes to
agree on at most two different values one of which is necessarily the default value; the other
value is the sender’s value if the sender is fault-free. It is shown that at least 2m 4+ v + 1
nodes and network connectivity of at least m+4wu+1 are necessary to achieve m/u-degradable
agreement. Also, an m/u-degradable agreement algorithm is presented for more than 2m+u

nodes.

The results presented in this report suggest that degradable agreement is a cost-
effective approach for tolerating a small number of Byzantine failures using forward recovery
and a large number of failures using backward recovery. Further research is required to

explore the applications of degradable agreement.

The report also formulates the problem of degradable clock synchronization. This

problem is under investigation presently.

References

[1] 1. S. Bhandari, “On the graceful degradation of byzantine agreement,” Master’s thesis,
University of Massachusetts-Amherst, September 1985.

[2] D. Dolev, “The Byzantine generals strike again,” J. Algo., pp. 14-30, 1982.

[3] D. Dolev, J. Y. Halpern, and H. R. Strong, “On the possibility and impossibility of
achieving clock synchronization,” J. Computer and System Sciences, vol. 32, pp. 230—
250, 1986.

[4] R. E. Harper, J. H. Lala, and J. J. Deyst, “Fault tolerant parallel processor architecture

overview,” in Digest of papers: The 18" Int. Symp. Fault-Tolerant Comp., pp. 252-257,
1988.

19

[5]

[10]

[11]

C. M. Krishna and I. 5. Bhandari, “On graceful degradation of phase locked clocks,”
in IEEE Real-Time Systems Symposium, pp. 202-211, 1988.

L. Lamport, “The weak Byzantine generals problem,” J. ACM, vol. 30, pp. 668-676,
July 1983.

L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,” ACM Trans.
Prog. Lang. Syst., vol. 4, pp. 382-401, July 1982.

J.-F. Paris, “Voting with witnesses: A consistency scheme for replicated files,” in In-

ternational Conf. Distributed Computing Systems, pp. 606-612, 1986.

M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the presence of faults,”
J. ACM, pp. 228234, April 1980.

D. P. Siewiorek and R. S. Swarz, The Theory and Practice of Reliable System Design.
Digital Press, Bedford, MA, 1982.

T. B. Smith III et al., The Fault-Tolerant Multiprocessor Computer. Park Ridge, NJ:
Noyes Publications, 1986.

20

