
The work described in this paper was funded in part by The Boeing Research & Technology, and coordinated with Dr. Jae H. Kim (Boeing PM).
 1 of 7

AN EFFICIENT MULTICASTING FOR

MULTI-CHANNEL MULTI-INTERFACE WIRELESS MESH NETWORKS

Sung-Hwa Lim*, Cheolgi Kim*, Young-Bae Ko†, and Nitin H. Vaidya*

* Coordinated Science Laboratory, Univ. of Illinois at Urbana-Champaign, IL

Email: {sunghwa, cheolgi, nhv} @illinois.edu
† Dept. of Information & Computer Engineering, Ajou University, Suwon, Korea

Email: youngko@ajou.ac.kr

ABSTRACT
Multicasting can be an effective routing service in wireless
mesh networks (WMNs), which have gained significant
acceptance in recent years due to its potentials of provid-
ing a low-cost wireless backhaul service to mobile clients.
Many applications in WMNs require efficient and reliable
multicast communication, i.e., with high delivery ratio but
with less overhead among a group of recipients. However,
in spite of its significance, there has been little work on
providing such a multicast in mesh networks. Traditional
multicasting protocols for wireless multi-hop networks
mostly assume that all nodes (equipped with a single inter-
face) collaborate on the same channel. The single-channel
assumption is not always true for WMNs that often provide
the nodes with multiple interfaces for the purpose of sub-
stantial performance enhancement. In multi-
channel/interface mesh environments, the same multicast
data need to be sent multiple times by a sender node if its
neighboring nodes operate on different channels. In this
paper, we try to tackle this challenging issue of how to
design a multicast protocol more suitable for multi-
interface and multi-channel WMNs. Our multicasting pro-
tocol builds multicast paths while inviting multicast mem-
bers, and allocates the same channel to each of neighbor-
ing members in a bottom up manner. This mechanism may
reduce message overheads and delivery delays while
guaranteeing successful message deliveries. For the per-
formance evaluation, we have implemented the proposed
scheme on a real multi-channel/interface mesh network
test-bed with two IEEE 802.11a cards per node.

I. INTRODUCTION

Multi-Channel Multi-Interface (MCMI) wireless mesh
networks have been emerging as a new paradigm in multi-
hop wireless networks. They enhance network-wise
throughput by highly parallelizing packet forwarding,
which is limited in single channel networks. In MCMI
WMNs, neighboring nodes try not to share occupying
channel to maximize simultaneous packet transmissions;
when two neighboring nodes occupy the same channel,
only either of them communicates at a time. We call this

policy as the maximized channel distribution. Wireless
communications are known to have advantages in multi-
casts of having open communication media, air, shared by
all nodes within a communication range as long as the
nodes are tuned to the channel. However, notice that such
an advantage will be gone with the maximized channel
distribution. Especially, if the dominant communications
in a network is multicast like in, military command net-
works, the maximized channel distribution may be even
harmful.

To cope with this problem, recent researches have pro-
posed top-down and centralized multicasting schemes
initiated by the group owner (source node) [1,5,6]. Here,
the source node of a multicast group builds a minimal path
tree from the source (root) to all group members (leafs).
Then, it enforces to assign the same channel on all child
nodes under a one-hop parent (sender). However, this top-
down enforcement can break the balance of other commu-
nications and a centralized approach increases control
message overheads. We instead take a bottom-up and dis-
tributed approach to construct multicasting tree and to
assign channels. Bottom-up approach scales up better at
the network environment where various communications
co-exist, and requires less control overheads.

On the other hand, previous researches are mostly fo-
cused on building of minimal path tree from the source
node to multicast client nodes, and do not provide the
entire practical procedure of multicasting (e.g., session
creation/close and advertisement, member management,
etc.). Moreover, they are not implemented on real envi-
ronments but only evaluated on simulation tools.

Our multicasting protocol builds multicast paths while
inviting multicast members, and allocates same channel to
each of neighboring members in a bottom up manner.
While building paths, intermediate relaying nodes are
minimally employed not only by path length but also by
current link quality. We have implemented our multicast-
ing protocol with the real MCMI test beds, Net-X [3]. We
have shown that our scheme can reduce message over-
heads and delivery delays while guaranteeing successful
message deliveries by performance evaluations.

 2 of 7

Fig. 1. An example of hidden terminal problem on a

multicast tree constructed by MCM algorithm

II. RELATED WORKS

Though multicasting can be an effective routing service,
there are not much works on multicasting for MCMI
WMNs. In [1], the most closely related work to ours, Zeng
et al. proposed a multi-channel multicast (MCM) scheme
which consists of a sub-optimal multicast tree construction
algorithm and a channel allocation algorithm. At first, they
find out the minimal set of relaying nodes after BFS
(breadth first search), and build the tree which spans every
member node of the multicast group from the source node.
After then, they assign the identical channel on sibling
nodes that have the same parent on the tree. This strategy
can minimize the number of links from a source to all
group members with small co-channel interference. Cheng
et al. proposed a greedy algorithm to minimize total chan-
nel conflicts (the number of interfering links) and the tree
cost [6]. Their algorithm randomly creates a sub-route
from the source to any receiver node, and assigns channels
on all nodes in the route. It repeats this procedure until the
desired sub-optimal total channel conflict value is reached,
while selecting the route that has less total channel con-
flicts at every iteration.

Nguyen et al. proposed a new channel assignment
scheme that can reduce channel conflicts by relieving
hidden channel problem, from which MCM algorithm [1]
may suffer [5]. The hidden channel problem, which is
similar to hidden terminal problem in MANET, occurs
when two remote nodes (i.e., two-hops away from each
other) try to tune on the same channel. Fig.2 shows an
example of the hidden channel problem when a multicast
tree is constructed and receiving channels of all nodes are
assigned by MCM algorithm. We assume that the numbers
written close by the node figures are the assigned channels
of each node. Multicast data are transmitted from node A
(source) to all nodes by multi-hop only on each of their
one-hop child’s channels (e.g., node B sends out packets
only on channel 2). As both node B and G are tuned on
channel 1 for receiving, both node A and D will transmit
packets on channel 1. Then, the signals sent from both
node A and D will conflict with each other at node B if
they transmit at the same time.

Fig. 2 A simple illustration of our network model
 (3 nodes, each of which has 2 wireless interfaces)

Therefore, node B may not receive correct multicast pack-
ets from node A. To reduce these channel conflicts,
Nguyen et al. employs not only orthogonal channels but
also partially overlapped channels for the channel assign-
ment. To reduce the adjacent channel interference caused
by employing partially overlapped channels, they also
proposed a sub-optimal channel separation algorithm by
considering interference between all channels.

As pointed out earlier, these previous schemes for
MCMI WMNs employ a top-down and centralized method.
Thus, building multicast trees and assigning distinct chan-
nels on every node require the source (or centric) node to
know all the information about network topology immedi-
ately and to exchange control message with every node.
Moreover, some channel assignment forced by source
node may conflict with the current channel assignment
strategy in the target WMN. For example, Net-X one of
MCMI WMNs employs balanced channel allocation strat-
egy, which tries to tune distinct channels on every node
within two-hop range to decrease co-channel interference
for the unicast transmission [2]. Therefore, we suggest a
bottom-up and distributed based multicasting scheme that
also considers current link quality.

III. NETWORK MODEL

Our MCMI WMN model, similar to the one used in
[2,3,7], consists of several wireless mesh nodes each of
which is equipped with two wireless interfaces. One of
these interfaces used only for receiving data is referred to
as Fixed Interface and the channel tuned on the fixed in-
terface is called Fixed Channel. A node can receive data
only on its fixed channel. The other interface is named
Switchable Interface. If a node wants to transmit data to
another node, it tunes its switchable interface to the fixed
channel of the destination node before transmitting the
data. Of course, if two neighboring nodes share the same
fixed channel, then the transmitter sends data on its fixed
interface. Fig.2 shows an example of data communication
in our network model assuming that there are three nodes
(Node X, Y, Z) and the fixed channel of each node is A, B,
and C, respectively. However, if Node Z is using channel
B as the fixed channel instead of channel C, then Node B
will use its fixed interface for data transmission to Node Z.

 3 of 7

Nodes exchange their fixed channel information by pe-
riodically broadcasting “Hello Messages” on all possible
channels. By exchanging hello messages, every node can
also check current link quality from each of its neighbors.
Each node keeps a tab of the successfully received hello
messages in last 64*H seconds where H is the hello inter-
val while maintaining 64-bitmaps for each of its neighbor-
ing node. A node can estimate the link quality between
another node by using both backward and forward link
delivery probability. Backward link delivery probability
for a neighboring node can be estimated by this mecha-
nism. By enclosing each of these estimated values of all
neighbors while sending hello message, every node comes
to know the forward link delivery probability for each of
its neighboring nodes. Every node also includes its
neighbor list, fixed channel of each neighbor, and link
quality between them in the hello message. Therefore,
every node is able to have current information about its
one-hop and two-hop neighbors. To reduce co-channel
interference, our network system employs a balanced
channel algorithm [2] in which the fixed channel of a node
may be changed over time if there are many neighboring
nodes in two-hop ranges who are using the same fixed
channel.

Like other MCMI WMNs, the same broadcast data need
to be sent multiple times by a sender on all possible chan-
nels. For multicasting, the source node disseminates mul-
ticast data only on the channels that are written in the mul-
ticast table. Channels and interface information are filled
in the multicast table with respect to multicast groups.

We denote G=(V,E) to a network graph where V repre-
sents a node and E represents a unidirectional direct link
among nodes. If Vvu ∈, , and a unidirectional direct link

Evu ∈),(exists, then node u can transmit data to node v
directly without through other nodes. We define Q(u,v) as
a delivery probability from u to v when Evu ∈),(exists,
which ranges from 0 to 1. The term delivery probability
and link quality will be used interchangeably with the
same meaning in this paper. We can estimate current link
quality by exploiting received hello messages without
extra network overhead. We define Thmci as a minimal
delivery probability for a reliable direct link in multicast
session n. If Q(u,v) ≥ ThMCn, and Q(u,v) ≥ ThMCn where

Vvu ∈, and Evu ∈),(exists, then we say that node u and v
is a one-hop neighbor of each other in multicast session n.
ThMCn value may be proportional to the required minimal
success ratio of data delivery for the multicasting session n.
In this paper, we also use the term multicast session and
multicast group interchangeably with the same meaning.

Table 1. Major messages for the multicasting

IV. MULTICASTING FOR MULTI-CHANNEL
MULTI-INTERFACE WMNS

A source node initiates a multicast group and disseminates
an advertisement message to every node in the network.
This message is supposed to be relayed only by some des-
ignated intermediate nodes, which are chosen among the
current sender’s one-hop neighbors. A multicast tree is
constructed while the advertisement message is being
disseminated hop by hop. Thus, on receiving the adver-
tisement message and attempting to join the group, a node
replies a join message back to the node (parent node) that
has sent the advertisement message to itself. Now, when
receiving the join message, the node sets the sender node
as one of its child nodes and sends a reply message to that
node. Some channel adjustment information is enclosed in
the reply message to let newly joined child node have the
same fixed channel as other child nodes have. When the
source node sends multicast data, it is relayed to all group
member nodes only through designated relaying nodes.
Table 1 describes major control and data messages for our
multicasting scheme. Every multicast message includes
multicast session ID, source address, and sender’s address
by default.

For the relaying of MCAST_DATA to receiver nodes,
intermediate nodes can participate in the multicast session
as one of following states.
 Coordinator Candidate: A node becomes this state if

its IP address matches one of relaying node addresses
enclosed in the received JOIN_ADV.

 Multichannel Coordinator: An intermediate node who
relays MCAST_DATA. Only a Coordinator Candidate
node can become this state after receiving JOIN_REQ.

Message Featured Contents Description

JOIN_ADV List of next relaying
nodes

Broadcast message origi-
nated by source node to
advertise the session.

JOIN_REQ
The address of the
node originated this
message

Unicast message sent by a
node who wants to join the
session.

JOIN_RPL
the channel adjusting
information for
switching target

Unicast message sent by a
source or a relaying node
on response to JOIN_REQ

MCAST
_DATA

Data Multicast data originated by
the source node

 4 of 7

Algorithm 1. Link-quality based minimal relaying node
search algorithm
INPUT: pu: the parent node of node u

N1u: a set of u’s all 1-hop neighbors
N2u: a set of u’s all 2-hop neighbors

OUTPUT: MPRu : the set of relay nodes from node u

N1u= N1u – {pu}; // exclude pu

neighbor hop-one exclude // ; 'spupu
N1N1N1 −= uu

WHILE (N1u is not empty && N2u is not empty) DO
Find a set Sk where uk NS 2⊂ and every element ki of Sk

has the smallest size of parent set ukk ii
N1N1P ∩= among

all elements in N2u;

;S wherePS
S

1
kP ki

i

k
k

ik
∈∀=

=
U

Find a set Sl where
kl PSS ⊂ and every element li of Sl has

the largest size of the child set ull ii
N2N1C ∩= ;

⎭⎬
⎫

⎩⎨
⎧ ≥=

=∈∀ MCniiStoiSli ThulQandluQll
lli

) ,()},({max
|| 1 wheremax ;

MPRu= MPRu U {lmax} ;
;

il
N1N2N2 −= uu

N1u= N1u – {lmax };
DONE

4.1 Group Management and Channel Adjustment
4.1.1 Join Advertisement and Relaying Procedure
After a source node initiates a multicast group, it dissemi-
nates JOIN_ADV on its all possible channels to advertise
the multicast session. The source node finds out the mini-
mal set of relaying nodes among its one-hop neighbors
that can span all of its two-hop neighbors, by using the
minimal relaying node search algorithm. Then, the set
(list) is enclosed in the JOIN_ADV message. Only the
nodes in the list forward the message.

A link-quality based minimal relaying set searching al-
gorithm is described in Alg.1. Because finding out the
minimal relaying set is a variation of the set-cover prob-
lem, which is NP-complete, we have employed the ap-
proximate algorithms proposed in [1,8], and modified it by
adding a link quality checking procedure. Main idea is as
follows: At first, the algorithm finds two-hop neighbors
who have the smallest number of parent nodes (i.e., one-
hop neighbors of current sending node). Then, every par-
ent (i.e., a one-hop neighbor of current node) of these
nodes is set as one of relay candidates. At second, among
the candidates, the algorithm finds a set of nodes who
have the smallest number of child nodes. At third, among
the chosen nodes, the algorithm finally finds a relaying
node (one-hop neighbor) who has the best link-quality
from the current sending node. Then, the node and its
child nodes are removed in the one-hop list and the two-
hop list, respectively. These procedures are repeated until
either one-hop neighbor list or two-hop neighbor list be-
come empty.

0

7

16

614

15

13

17

8

JOIN_ADV
(MPR:2, ...)

2

: Multicast Source : Coordinator Candidate

0

7

16

614

15

13

17

2
JOIN_ADV
(MPR:6,8)

JOIN_ADV

JOIN_ADV
8

Fig. 3. An example of JOIN_ADV messaging

On receiving JOIN_ADV, the node stores the last
sender’s address in its parent candidate list for the multi-
cast session. Actually, a node can receive JOIN_ADV for
a session more than once because the source node may
have sent out the message several times or there can be
multiple relaying nodes in physical one-hop range. A node
is set to a coordinator candidate sate only if its address
matches one of relaying node list enclosed in the message.
The coordinator candidate node overwrites next relaying
node list in the message by employing the algorithm, and
sends it out on its every possible channel.

Fig.3 shows an example of the procedure for
JOIN_ADV originated by a source node (node 0). Node 0
disseminates JOIN_ADV with a relaying node list includ-
ing node 2. On receiving the message, node 2 becomes a
coordinator candidate and forwards the message with new
relaying node list (node 6 and node 8). On receiving the
message, only node 2 and node 8 become coordinator
candidates and forward it. Because the relaying of the
message is not needed anymore, node 6 and node 8 sends
out the message with empty relaying list, respectively. In
that example, node 7 will store node 2, node 6 and node 8
in its parent candidate list for the multicast session.

4.1.2 Member Joining and Channel Adjustment
After receiving JOIN_ADV, if the node wants to join the
group, it selects its parent among parent candidate list. A
node who currently shows best link quality from this node
becomes the parent. We denote a node by u, and the par-
ent candidate set of node u by Pu, the current link quality
from x to y by Q(x,y), and all elements of Pu by v1, v2,...v|Pu|.
Then, we can find out the parent node p as Eq.1. Upon the
parent has been chosen, the node sends JOIN_REQ to the
parent node by unicasting.

⎭⎬
⎫

⎩⎨
⎧ ≥=

=∈∀ MCniiPtoiwherePvi ThvuQanduvQvp
uui

),()},({max|
|| 1 (1)

On receiving JOIN_ REQ, if the node is in coordinator
candidate state, then it reports the information to its parent
that is also selected from its parent candidate list using
Eq.1. Then, the node changes its state to multichannel
cooperator, and stores the requesting node’s address in its
child list.

 5 of 7

Fig. 4. Member joining and channel adjustment

Algorithm 2. Decision of channel adjustment information
INPUT: curr: current parent node, req: join requesting node

CHcurr: Fixed channel of node curr
CHreq: Fixed channel of node req
C_Listcurr: child list of node curr
CH_Listcurr: channel list of node curr

OUTPUT: CHADJ : Fixed channel to be stored in the channel
adjustment information

IF (C_Listcurr is empty)

IF (CHreq==CHcurr)
 CHADJ= one of channels in CH_Listcurr except CHreq
ELSE CHADJ=CHreq

ELSE CHADJ= the dominant fixed channel used in C_Listcurr
DONE

On responding to JOIN_REQ, the node sends
JOIN_RPL to the requesting node. For the efficient multi-
casting, the channel adjustment is performed by a coordi-
nator candidate or multichannel coordinator node. The
channel adjusting information (new fixed channel of the
child node) is determined by the channel adjustment algo-
rithm as shown in Alg.2, and enclosed in JOIN_REQ. If
the node who has sent JOIN_REQ is the first coming child
of current node (parent), then the adjustment information
is set to as the child’s current fixed channel unless the
fixed channel is same to its parent’s. If the fixed channels
are same, the parent node selects other one from its chan-
nel list to avoid channel conflict. If the node who has sent
JOIN_REQ is not the first coming child, then the channel
information in JOIN_RPL will be set as a dominant fixed
channel that most of nodes in the child list of the parent
node are using. On receiving JOIN_RPL, the node
changes its fixed channel on according to the channel ad-
justment information in the message, and locks its fixed
channel not to change during the multicast session.

Fig.4 shows an example of member joining and channel
adjustment procedure when node 13 and node 14 try to
join the multicast group. “Ch:x” written by a node means
its current fixed channel, the number by a link is the logi-
cal sequence of message events. In Fig.4(a), node 13 sends
JOIN_REQ to node 6. Because node 6 is still in coordina-
tor candidate state and the child list is empty, it forwards
the message to node 2 who is its parent.

Fig.5. Member disjoining procedure

In that moment, node 14 sends JOIN_REQ to node 6. In
Fig.4(b), after then, node 2 sends JOIN_RPL with channel
adjusting information (CH=4) to node 6 because it already
has node 8 as a child whose fixed channel is 4. Then, node
6 switchs its fixed channel to channel 4, and sends
JOIN_RPL to node 14 with channel adjusting information
(CH=3) to make node 14 switch its fixed channel to chan-
nel 3 that is being used by node 13.

4.1.3 Member Disjoin
A receiver node sends DISJOIN_REQ message to its cur-
rent parent. After sending DISJOIN_REQ, the node
unlocks its channel lock and removes all relevant data
structures. On receiving DISJOIN_REQ from its child, the
multichannel coordinator node removes the node in its
child list. If a multichannel coordinator node’s child list
becomes empty, then it sends DISJOIN_REQ to its parent
node, resigns from mulitichannel coordinator state, and
releases all relevant data. Fig.5 shows an example of
member disjoining procedure when node 16 is about to
disjoin the group. Node 16 sends DISJOIN_REQ to node
8 who is its parent and a multichannel coordinator. Be-
cause the child list of node 8 became empty, node 8 sends
DISJOIN_REQ to node 2 who is its parent. Finally, node
2 removes node 8 from its child list.

4.2 Multicast Data Forwarding
The source node sends out MCAST_DATA only on the
channel that its one-hop child nodes are listening on. On
receiving the data, only multichannel coordinators forward
them in the same manner. With these sophisticated proce-
dures, message overheads can be minimized.

4.3. Managing of Reliable Multicasting
We also address the side effects of channel assignment in
multicast group initialization. In practical MCMI WMNs,
a so-called link fluctuation problem caused by the fluctuat-
ing link quality may seriously degrade the reliability of
multicasting. In Fig.6(a), the wireless link from node 0 to
node 3 is considered as a one-hop route for a multicasting
session while initializing the group. We assume that node
0 is a source and node 3 is a client for a multicast session.

 6 of 7

Fig. 6. Link fluctuation problem

If node 3 receives a child-probing message from node 0
for constructing a multicast tree, then node 3 may set node
0 as its one-hop parent. Then, node 3 will receive multi-
cast data from node 0 neither node 1 nor 2. However, if
the link quality between node 0 and 3 becomes too low by
some reasons, then most of the multicast data sent by node
0 will not be delivered to node 3 as shown in Fig.6(b).

Dynamic channel allocation used in MCMI WMNs may
be one of the major reasons of the link fluctuation. Al-
though we usually assume that every channel has equal
link quality, it may not be true in practice because physi-
cal characteristics of each channel are various. By device
specific characteristics, some channels may have stronger
signal power or higher tolerance against specific interfer-
ences than other channels [11]. That is to say, a wireless
link between two neighboring nodes may be disconnected
or weakened after changing their operating channels. To
cope with these problems, we let every member node
keeps not one parent but several parent candidates for a
multicast tree during tree construction. After then, the
node will receive multicast data from the chosen parent
node in the candidate list who has the best link quality
between the node.

V. IMPLEMENTATION AND EVALUATION
5.1 Experimental Environments
Our MCMI WMN test-bed consists of 18 Soekris net4521
nodes deployed on the 4th floor of CSL building in Uni-
versity of Illinois. Fig.7 shows a screen shot of our moni-
toring tool displaying current state of deployed nodes.
Each node has a 133MHz CPU and two Atheros 802.11a
interfaces as a fixed and switchable interface. We imple-
mented our multicasting scheme on top of IEEE 802.11a
protocol and Linux 2.4.6 kernel. Though 802.11a has 12
orthogonal channels in 5 GHz band, we use four concur-
rent channels (i.e., 40, 52, 64, and 149) to avoid adjacent
channel interferences. We set the wireless interfaces to
operate at 6Mbps fixed mode. Slightly modified Madwifi
driver is used for the wireless device driver. The two inter-
faces are abstracted as one by using bonding driver. Fun-
damental software architecture is borrowed from Net-X
system [3] and modified.

Fig. 7. Deployed nodes for the experiments

We evaluate the performance of our proposed algorithm
(MMCA) by comparing to MMNCA and SCM. Each is
described as follows:
 Single Channel based Multicasting (SCM):
MCAST_DATA originated by a source node are for-
warded only by the chosen intermediate nodes (relay
nodes) in the multi-hop environment. These relay nodes
are determined by minimal multiple relaying algorithms.
Data transmission in the relaying or source node is done
by broadcasting on every channel the node has.

 MCMI-based Multicasting with no Channel Adjust-
ment (MMNCA): Determining of relay nodes and re-
laying of MCAST_DATA are same to those of SCM.
Multicast data from the relaying or source node are sent
out only on the channels being used by one-hop
neighbors who are multicast receivers or relay nodes.

 MCMI-based Multicasting with Channel Adjustment
(MMCA): Determining of relay nodes and relay-
ing/transmitting of MCAST_DATA are same to those of
MMNCA. The relaying or source node tries to unifying
fixed channels of its one-hop child nodes by sending
JOIN_RPL with channel adjusting information to them.

Performance metrics for our evaluation are as follows:
 Network traffic: sum of multicast traffic every node
sends during an experiment

 Delivery ratio: the average ratio of successful delivery
of MCAST_DATA each multicasting receiver receives
during an experiment

 Average goodput: the average amount of non-
redundant MCAST_DATA each multicasting receiver
receives during an experiment.

5.2 Results and Analysis
We assume that the number of multicast group and its
source node is one. The size of a MCAST_DATA packet
is 1024 bytes. Hello messages are disseminated by every
node at every 4 seconds. The minimal link quality for a
reliable direct link (Thmci) is set to 0.96. Experiments for
each scenario are repeated by 30 times.

 7 of 7

Nodes=18, Pkt=1024B, Rate=1pkt./2s., Time=90s.

0%

20%

40%

60%

80%

100%

3 6 9 12
Number of Receiv ers (Group members)

D
el

iv
er

y
R

at
io

SCM MMNCA MMCA

Fig. 8 Data delivery success ratio

Nodes=18, Pkt.=1024B, Rate=1pkt./2s., Time=90s.

0

200

400

600

800

3 6 9 12
Number of Receiv ers (Group Members)

To
ta

l D
at

a
se

nt
 b

y
al

l n
od

es
 (

P
ac

ke
ts

)

SCM
MMNCA
MMCA

Fig. 9. Total network traffic transmitted by all nodes

Nodes=18, Receiv ers=9, Pkt.=1024B, Time=90s.

0

10000

20000

30000

100 200 300 400 500 600
Data rate (Packet/s.)

A
ve

ra
ge

 G
oo

dp
ut

(P
ac

ke
ts

)

SCM
MMNCA
MMCA

Fig. 10. Average goodput per receiver

Fig.8 shows the delivery success ratio for
MCAST_DATA packets sent by the source node by vary-
ing number of multicast receivers (group members) during
90 seconds. As we can see the results, our scheme
(MMCA) shows similar delivery success ratio comparing
with others. We also measured total network traffic sent
by all nodes for the multicast. Total 46080 bytes of
MCAST_DATA are sent out from the source node. As we
can see in Fig.9, channel adjustment of MMCA can effec-
tively reduces network traffic overheads comparing to
other schemes.

We have measured the goodput of each scheme during
90 seconds by varying the MCAST_DATA transmission
rate from 100 packets/sec to 500 packets/sec when receiv-
ers are 9. As we can see in Fig.10, MMCA shows more
than double times of goodput than other schemes over 400
packet/sec. Delays for switching channels on the switcha-

ble interface to send out data on all possible channels may
incur buffer overflow which decreases goodput in SCM.
Moreover, broadcasting on all possible channels may in-
cur co-channel interference to MCAST_DATA transmis-
sions of near nodes. MMNCA may also be suffered from
the same problem if relaying or source nodes have more
than one child.

VI. CONCLUSION

In this paper, we try to tackle several challenging issues of
designing a multicast protocol more suitable for MCMI
WMNs. Our multicasting protocol builds multicast paths
while inviting multicast members, and allocates same
channel to each of neighboring members with bottom up-
based and distributed-oriented approaches. This mecha-
nism reduces message overheads and delivery delays
while guaranteeing successful message deliveries. We
have implemented the proposed scheme on a real multi-
channel mesh network testbed (Net-X), and have shown
that our proposed scheme performed better than previous
ones without reliability degradation.

REFERENCES
[1] G. Zeng, B. Wang, et al., "Multicast Algorithms for Multi-

Channel Wireless Mesh Networks," IEEE ICNP, Oct. 2007.
[2] P. Kyasanur and N.H. Vaidya, “Routing and link layer pro-

tocol for multi-channel multi-interface ad-hoc wireless net-
works,” ACM SIGMOBILE MC2R, vol.10, pp.31-43, Jan.
2006.

[3] C. Chereddi, P. Kyasanur, and N.H. Vaidya, “Design and
Implementation of a Multi-Channel Multi-Interface Net-
work,” REALMAN, May 2006.

[4] A. Raniwala and T. Chiueh, “Architecturue and Algorithms
for an IEEE 802.11-Based Multi-Channel WMN,” IEEE
INFOCOM, 2005.

[5] H. Nguyen, U. Nguyen, “Channel assignment for multicast
in multi-channel multi-radio wireless mesh networks,” Wire-
less Communications and Mobile Computing, Published
Online, Oct. 2008.

[6] H.Cheng and S.Yang, “Joint Multicast Routing and Channel
Assignment in Multiradio Multichannel Wireless Mesh Net-
works Using Simulated Annealing,” LNCS, vol.5361, 2008.

[7] C. Kim, Y.-B. Ko and N.H. Vaidya, “Link-State Routing
Protocol for Multi-Channel Multi-Interface Wireless Net-
works,” MILCOM, Nov. 2008.

[8] J. Macker, “Simplified Multicast Forwarding for MANET,”
Internet draft, draft-ietf-manet-smf-08.txt, 2008.

[9] J. Xie, R. Talpade, A. Mcauley, and M. Liu, “AMRoute : Ad
Hoc Multicast Routing Protocol,” Mobile Networks and Ap-
plications, vol.7, pp. 429-439, 2002.

[10] Y. Zhao, L. Xu, M. Shi, “On-Demand Multicast Routing
Protocol with Multipoint Relay (ODMRP-MPR) in Mobile
Ad-Hoc Network,” ICCT, April 2003.

[11] Vijay Raman, “Dealing with Adjacent Channel Interfer-
ence Effects in Multichannel, Multi-interface Wireless Net-
works,” Master’s Thesis, University of Illinois, 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

