
Link-State Routing Protocol for Multi-Channel
Multi-Interface Wireless Networks

Cheolgi Kim∗, Young-Bae Ko† and Nitin H. Vaidya∗

∗Dept. of Electrical & Computer Engineering, Univ. of Illinois at Urbana-Champaign, Urbana, IL
Email: {cheolgi, nhv}@uiuc.edu

†Dept. of Information & Computer Engineering, Ajou University, Suwon, Korea
Email: youngko@ajou.ac.kr

Abstract—A lot of military networks maintain multiple wire-
less channels and exploit frequency-hopping spread spectrum
on those channels for anti-jamming. One drawback of using
multi-channel communications is the high overhead involved in
broadcast operations: a transmitter should transmit a broadcast
packet to all channels that are possibly occupied by a receiver.
This makes certain broadcast-intensive mechanisms, such as,
link-state routing difficult to implement. Link-state routing,
however is faster and robust, which makes it suitable for military
applications. In this paper, we present a link-state routing
protocol tailored for multichannel networks by minimizing the
broadcast overheads. This is achieved by means of a special
set of nodes called cluster-heads. We have implemented our
protocol on a multichannel, multi-interface wireless test bed
and have compared its performance with an AODV-like reactive
routing protocol, which is also tailored for multi-channel multi-
interface networks. The measurements on our test bed show
that the proposed link-state routing protocol provides transient
communications in a comparable or better performance.

I. INTRODUCTION

In wireless networks, multiple communication links share
the same spectrum as communication media. This leads to
increased levels of channel contention and interference. Multi-
channel approaches help manage such interference and con-
tention among the nodes by slicing the spectrum into multiple
channels and assigning them to the participating nodes. They
bring down per-channel activity of communication and per-
channel bandwidth to manageable level, which assist protocol
design and implementation. Moreover, narrow per-channel
bandwidth can simplify circuit design, too.

Military networks use the frequency hopping spread spec-
trum techniques, which naturally provide multiple channels of
communications, to mitigate the effect of jamming interfer-
ence. Multiple channels, however, partition the network based
on the channel used. This may result in a disconnected network
if the nodes communicate only in their assigned channels. To
resolve this problem, several multi-channel ad-hoc / mesh net-
work approaches have been proposed in the literature [1], [2],
[3]. Furthermore, several routing mechanisms are proposed for
multi-channel networks. In this paper, we discuss a link-state

The work in this paper was funded by The Boeing Company.

routing mechanism that is suitable for a multi-channel, multi-
interface wireless network.

In link-state routing, each node maintains the link-state
information of the entire network and makes route decision
based on this information. Even though the overheads due to
link-state information exchange are relatively high, route is
discovered promptly without additional control overhead such
as route request packets. Thus, link-state routing makes com-
munication reliable, making it suitable for high-availability
systems, such as military networks.

In this paper, we introduce MCLSR (Multi-Channel Link-
State Routing) Protocol, which is designed for multi-channel
multi-interface wireless networks for high-availability systems.
Most of the existing designs of the link-state routing exploit
the broadcast nature of the wireless medium for propagating
the link-state information [4]. However, since the broadcast
overheads in a multichannel network are much higher than a
single-channel environment, the existing implementations of
the link-state routing protocols are not desirable to be directly
applied for multi-channel networks. Notice that each node has
to broadcast the packet in all the channels to deliver a single
broadcast packet as a neighboring node could be tuned to any
of the channels available in a multichannel network, thereby
increasing the overhead involved. To minimize the broadcast
overheads, we propose to have a set of cluster-head nodes,
which are elected dynamically for exchanging the link-state
information over the network. The cluster-head nodes collect
the link-state information from their dependent nodes, share
it with other cluster-heads, and rebroadcast the shared link-
state information to its dependents. We explain the procedures
involved in Section IV.

We have implemented our protocol on a real multi-channel,
multi-interface wireless test bed with two IEEE 802.11a in-
terfaces per node. We discuss the implementation issues and
the experimental results in Section V. Our results show that
our link-state routing mechanism provides a stable and reliable
performance in high traffic conditions. Then, we conclude our
paper in Section VI.

978–1–4244–2677–5/08/$25.00 c© 2008 IEEE

II. RELATED WORK

After the concept of wireless mesh networks emerged,
several variants of the original link-state routing protocol tai-
lored for wireless networks have been proposed. For instance,
Jacquet et al. proposed the Optimized Link State Routing
Protocol (OLSR) [4]. In this protocol, each node selects
multipoint relay nodes and link-state broadcast is performed
only by these selected set of nodes. This, in turn, reduces the
amount of broadcast messages in the network. Furthermore,
the link-information of only a subset of links are sent out every
time. OSPF-MANET (Open Shortest Path First for MANET)
is a link-state routing protocol proposed for mobile ad-hoc
networks (MANET) by the IETF OSPF working group [5].
OSPF-MANET extends OSPF, which is widely used in wired
networks, for wireless networks. It also allows only subset of
nodes for broadcast flooding.

Sivakumar et al. proposed CEDAR (Core-Extraction Dis-
tributed Ad Hoc Routing) [6], a link-state routing mechanism
designed for real-time applications. In CEDAR, selected core
nodes perform unicasts between them to propagate link states
as our approach. However, its design does not reflect multi-
channel characteristic of wireless networks. Draves et al. pro-
posed WCETT (Weighted Cumulative Expected Transmission
Time) as a multi-channel multi-interface routing metric, and
their link state routing protocol, LQSR (Link-Quality Source
Routing) [1]. LQSR is a source routed link-state protocol
derived from DSR [7]. They implemented the routing protocol
on test beds and compare the performance between routing
metrics.

Kyasanur and Vaidya proposed a novel multi-radio wireless
network architecture, called Net-X, and a routing metric [3].
The Net-X architecture is used in this paper. They proposed
a routing metric and a reactive routing protocol, and imple-
mented them on test beds [8].

III. NETWORK MODEL

Our network consists of a set of wireless nodes, each
of which equips itself with two wireless interfaces. One of
these interfaces remain fixed on a channel and we name this
interface as the ‘fixed interface.’ The other interface is capable
of switching across channels when required and hence called
the ‘switchable interface.’ We call the channel in which the
fixed interface of a node operates as the ‘fixed channel’ of
that node. Only the fixed interface is used for receiving data.
Additionally, the fixed interface can be used for transmitting
data, if any, on the fixed channel. Transmissions on the other
channels are taken care by the switchable interface. Suppose
that node u has a packet to node v and they are on different
fixed channels. Then, the switchable interface of u is tuned
to the fixed channel of v and transmits the packet on that
channel. If they are on the same fixed channel, node u’s fixed
interface is used for the transmission. We therefore need a
channel allocation scheme for assigning channels only to the
fixed interface as the channel in which a switchable interface
operates is determined based on the fixed channel of the next
hop node of a flow. If a node has a broadcasting packet, it

sends the packet to all possible channels because every channel
probably has a neighbor. For this purpose, the switchable
interface performs round-robin channel switching through all
channels except the fixed channel.

Let G = (V,E) denote a network, where V is the set of
nodes in the network, and E is the set of links between the
nodes. A link (u, v) ∈ E exists between two nodes, u, v ∈
V , if they are within the communication range of each other.
Let C denote the set of channels to be assigned to the nodes
and ~q(u, v) represent the unidirectional link quality of a link
(u, v) ∈ E. The bidirectional link quality q(u, v) is defined
by q(u, v) = g(~q(u, v), ~q(v, u)). In our implementations it is
simply defined as:

q(u, v) = g(~q(u, v), ~q(v, u)) = ~q(u, v) · ~q(v, u).

A subset of nodes in V are destined as the ‘cluster-head’ nodes
and we denote this subset as VC . We explain more on the
cluster-head nodes later. Additionally, we assume that every
node in the network has two types of neighbors, namely tight
neighbors (Nt) and loose neighbors (Nl) depending on the
quality of the link with the neighboring nodes. In general,
every node maintains two common link threshold values,
namely Thl and Tht, such that Thl < Tht. Nl and Nt are
defined by Thl and Tht such that

Nl(v ∈ V) = {u | u ∈ V and q(u, v) > Thl}
Nt(v ∈ V) = {u | u ∈ V and q(u, v) > Tht}.

Note that Nt ⊂ Nl because Thl < Tht should be satisfied.
Due to changing link conditions, Nl(v) and Nt(v) change
over time. These sets are used for cluster-head selection (see
Section IV).

IV. MULTI-CHANNEL LINK-STATE ROUTING PROTOCOL

Multi-Channel Link-State Routing (MCLSR) protocol is a
link-state routing protocol for multi-channel multi-interface
wireless networks with mission-critical applications. It is
tailored to minimize broadcast overhead due to link-state
propagation. To meet the requirements of mission-critical
applications, all nodes keep the link state information of
a network. In typical implementations of wireless link-state
routing mechanisms, such as OLSR and OSPF MANET, this
is achieved using a broadcast flooding. In our network model,
the overhead of broadcast is |C| times larger than that in
single-channel networks. Minimizing the broadcast overhead,
therefore, is considered one of the primary goals of our
protocol.

In MCLSR, nodes are classified into two disjoint categories,
namely the cluster-heads and dependents. Once a node is
chosen as a cluster-head, some of the other nodes that are
within one hop from this node become its dependents. Each
dependent can have multiple neighboring cluster-heads but
one and only one of them is identified as its master cluster-
head. A cluster-head cannot have another cluster-head as its
tight neighbor (Nt) as a rule1. A cluster-head along with its

1If a pair of cluster-heads indicate that they are tight neighbors of each
other, either of them will lose its cluster-head-ship according to the protocol

dependents forms a cluster. A cluster-head is responsible for
gathering the link-state information of its cluster based on
‘hello messages,’ which are periodically broadcasted by the
dependents in the cluster. Then, the cluster-head exchanges
the link-states of its cluster members with all the other cluster-
heads. The cluster-head receiving link-states of another cluster,
broadcasts the link-states. Consequently, link-state of every
node is distributed to all the other nodes.

(a) Example topology

(b) Link-state flow from cluster managed by
Node C to the network

Fig. 1. Example topology of MCLSR

Let us see an example for details. Figure 1(a) shows an ex-
ample of a network using MCLSR. Shaded nodes are cluster-
heads and the non-shaded nodes are the dependent nodes. A
cluster-head and its dependents are connected by solid lines
and the other neighboring pair of nodes are connected by
dotted lines. Every dependent node is in only one cluster.
The cluster has only one cluster-head node, which is a master
cluster-head of the cluster. All other neighboring cluster-head
nodes, if any, are considered as a generic neighbor to a
dependent node. Sometimes, a cluster may contain only one
node (which will be a cluster-head), as node K in the figure.

Figure 1(b) shows how the link-states are propagated from
a cluster node to the entire network. Link states of the
cluster members are delivered to cluster-head C through ‘hello
messages.’ Cluster-head C constructs a ‘cluster link-state’
that contains all link-states of the cluster members. Link-
state of an individual node is called ‘node link-state’ to
be distinguished from cluster link-state. Each cluster-head
periodically distributes the cluster link-states to other cluster-
heads through inter–cluster-head unicasts, which is presented
by dashed arrows in Figure 1(b). The delivered cluster link-
state is broadcasted to its own cluster members.

Hello messages and inter-cluster-head messages are the only

control messages in MCLSR. The message formats of the hello
messages and the inter–cluster-head messages are discussed in
the next section.

A. Node link-state and cluster link-state

Node link-state and cluster link-state are the internal infor-
mation units of delivered information by control messages,
such as hello messages and inter–cluster-head unicast mes-
sages. Fig. 2 depicts their internal structure.

Fig. 2. Link-state information structure

Node link-state: The node link-state is the basic data structure
that are contained in both the hello message and the inter–
cluster-head message. A node link-state consists of node
information that contains the state of the node, and a set of link
information that contains the link qualities. Node information
consists of a sequence number, which is incremented for
every hello message, a cluster-head indicator (CI) bit, which
indicates if this node is a cluster-head or not, and the fixed
channel used by the fixed interface.

The link information, on the other hand, contains the
directional link quality, which is measured from incoming
hello messages. Notice that total link quality, which is used
by routing protocol as a metric, is a function of a pair of
directional link quality, outgoing and incoming. Because each
node can only measure link quality of incoming direction, the
link quality field of node link-state contains that directional
link quality, which is ~q(u, v) where u is the outgoing node, and
v is the incoming node. The other directional link quality is
collected from node link-state of the node at the opposite side
of the link. Then, total link quality is calculated from the pair
of directional link qualities. In our protocol implementation,
directional link quality is the proportion of successful hello
message delivery. And, total link quality of a link is given by
(~q(u, v) · ~q(v, u)).

Additionally, the link information contains a cluster-head
indicator (CI) bit, which is used to indicate whether the node
on the other side of the link is a cluster-head or not. The CI
bit in the link information helps in cluster-head discoveries.

Cluster link-state: Cluster link-state message consists of the
link-states of all the cluster members. It is formed by concate-
nating the link-state structure of each of the cluster members
as shown in Fig. 2.

B. Control messages

(a) Various hello message formats

(b) Inter–cluster-head unicast format

Fig. 3. Control message structures

Hello message: The purpose of the hello message in MCLSR
is in three folds:

1) Distribution of up-to-date node link-states
2) Periodic link quality measurement on the receiver side,

and
3) Distribution of cluster link-states from a master cluster-

head to its dependents.
A dependent node periodically transmits a hello message

containing its node link-state. Every dependent node, upon
receiving a hello message sent by other nodes in the neighbor-
hood, updates its link-state database up-to-date. Additionally,
it measures the directional quality of the link, ~q(u, v) where
v is receiving node, from each of its neighbors, u, based on
the received hello messages. For measurement accuracy, the
size of hello message is fixed to 1024 bytes. Hello messages
are zero padded, if required, to satisfy this fixed size criteria.
Fig. 3(a) describes the structure of a hello message sent by
a dependent node. As seen in the figure, a dependent node
prepares a hello message by attaching the address of its
master cluster-head to the node link-state information. The
acknowledged master cluster-head includes the received node
link-state to its cluster link-state.

A cluster-head node sends a hello message to its cluster
members for updating them with the link-state information
of other clusters in the network. Every cluster-head that
has received one or more cluster link-state unicast messages
from other cluster-heads, broadcasts them to its dependents
through the hello message along with its own node link-state
information. The message format of the hello message sent by
a cluster-head node is shown in Fig. 3(a).

As we mentioned earlier, cluster link-state is periodically
propagated over the network. It is supposed to be less frequent
than hello message. In MCLSR, the rate of hello message is
tc multiple of the rate of cluster link-state propagation. Thus,
once every tc times of hello message, cluster link-state is
issued by a cluster-head. At the time, extended hello message

is issued, substituting for basic hello message. The structure
of extended hello message is also shown in Fig. 3(a). In an
extended hello message, there is an additional field called the
cluster-head list, where the master cluster-head includes a list
of known cluster-heads, which helps cluster-head discovery,
as explained later.

Inter–cluster-head unicast message: Once every tc times of
hello message, Inter–cluster-head unicast messages are sent as
well as an extended hello message by a cluster-head node to
other cluster-head nodes indicating the cluster link-state. The
structure of this message is described in Fig. 3(b). It consists
of the cluster link state along with the list of known cluster-
heads, like an extended hello message. Optionally, a dependent
node also can send out an inter–cluster-head message to
another cluster-head for cluster-head discovery. In this case,
the dependent nodes slice a inter–cluster-head message out of
the extended hello message received from its master cluster-
head. The detail is described in Section IV-D.

C. Cluster-head selection procedure

The cluster-head selection is performed based on the fol-
lowing rule:

∀v ∈ V,∃n ∈ VC , such that n ∈ Nl(v) (1)
∀m, n ∈ VC , m /∈ Nt(n) (2)

where, Nl and Nt denote the loose and tight neighbors
of a node, respectively (see Section III). Among the two
equations, Eq. (1) ensures that every node is within a one-hop
neighborhood from a cluster-head, and Eq. (2) minimizes the
density of cluster-heads by ensuring that no two cluster-heads
are tight neighbors of each other. This, in turn, minimizes
the number of control packets that are to be broadcast in the
network.

In fact, to manage Nl and Nt separately seems to just make
the protocol complicate. These two set of neighbors can be
defined to be identical and can be called just ‘neighbors,’
which makes protocol much simpler and easy to understand.
However, we distinguish Nl and Nt to reduce control over-
head caused by frequent cluster-head reselection. Semantically,
Eq. (1) is the condition to promote a cluster-head, and Eq. (2)
is the condition to demote a cluster-head. Nl(v) in Eq. (1)
makes promotion harder. But once a node is promoted as
a cluster-head, it will not be easily demoted because the
demotion is based on Nt(v). It prevents frequent change of
network configuration, which can make network unstable.

Algorithm 1 describes the cluster-head selection procedure.
It is run by each node independently, just before hello message
is issued. Here, id(v) is the unique identifier of a node v, which
can be the node’s IP address (used in our implementation).
How to assign unique id (or IP address) is out of the scope
of this paper. According to this algorithm, each node checks
if there is cluster-head in its neighborhood (Eq. 1). If there
is none, then the node itself becomes a cluster-head and
generates a unique cluster-head id. If a cluster-head is a tight

Algorithm 1 Decision to be a cluster-head for node v

Require: Collected link-state information
Ensure: Decision to be a cluster-head

1: if v ∈ VC then
2: N(v)⇐ Nt(v)
3: else
4: N(v)⇐ Nl(v)
5: end if

6: if N(v) ∩ VC = ∅ then
7: return TRUE
8: else
9: if ∀u ∈ N(v) ∩ VC , id(v) > id(u) then

10: return TRUE
11: else
12: return FALSE
13: end if
14: end if

neighbor of another cluster-head, then the cluster-head with
smaller id is demoted a dependent (according to Eq. 2). By
performing these decisions, no node is left without cluster-
head, and no pair of cluster-heads become tight neighbor at
a steady state. Additionally, if a node sees multiple cluster-
heads in its neighborhood, then it chooses the one to which
link quality is the strongest as its master cluster-head.

D. Cluster-head discovery

Once a cluster-head is elected, it has to discover the
other cluster-heads in the network for propagating the cluster
link-state information by unicasts. Notice that cluster-head
discovery is naturally performed with the cluster link-state
propagation. A cluster link-state is delivered to designated
nodes, which are the cluster-head’s dependents (via hello
message) and other cluster-heads (via inter–cluster-head mes-
sage), whichever the master–cluster-head is aware of. If a
designated node knows more cluster-heads than the master–
cluster-head, it forwards the cluster link-state to those cluster-
heads. As a result, a cluster link-state is propagated further
than expected. It results in discovery of an unknown cluster-
head to the receiving cluster-heads of the forwarding. In this
section, we explain how cluster link-state is forwarded further.
Those forwardings are called ‘cluster-head discovery’ because
it results in the discovery. The cluster-head discovery is done
in two phases: (1) neighbor–cluster-head discovery and (2)
non-neighbor–cluster-head discovery.

The following lemma supports the discovery algorithm; If
algorithm works in a steady state network, every cluster-head
must discover all the other cluster-heads in accordance with the
lemma. Notice that the notion that ‘The network is connected’
means that network is not partitioned, such that a path between
any pair of nodes are available.

Neighbor–cluster-head discovery

Lemma 1: If a graph GC = (VC , EC) is the graph that con-
nects every pair of cluster-heads in three-hops, the following
is satisfied: GC is a connected graph if and only if G is a
connected graph.

Proof: If GC is connected then G is connected for sure
because cluster-heads are all connected and their dependents
are connected to cluster-heads.

Suppose that G is connected but GC is not connected as
a contradiction. It means that GC is partitioned. Suppose that
GC has two disconnected group of cluster-heads, then they are
at least four hop distant. Then, there should be a node which
is not a cluster head and at least two hop distant from any
cluster-head. Then, that node cannot have a neighbor cluster-
head, but should be a dependent. It is against the protocol.
Lemma is proven.

From Lemma 1, we have that a network is connected if
cluster-heads are connected in GC . A pair of cluster-heads, u
and v are called neighbor cluster-heads when (u, v) ∈ EC . If
they are at one-hop from each other, the discovery is trivial as
the nodes come to know each other through their respective
hello messages. If they are at a two-hop distance, then there
exists a node w, such that w ∈ Nl(u) and w ∈ Nl(v). Thus,
the nodes u and v can listen to w’s hello message, which
contains the link-states of (w, u) and (w, v). As discussed in
Fig. 2, the link information of this hello message contains a
‘cluster-head indicator’ that indicates whether the node on the
other side of a link is a cluster-head or not. Thus, the nodes u
and v can learn about each other through w’s hello message.

Fig. 4. Three-hop cluster-head discovery

Discovering a three-hop cluster-head is a little tricky. Fig. 4
shows an example of a three-hop cluster-head discovery.
According to this figure, nodes u and v are cluster-heads, and
nodes w and x are dependent nodes that lie in between u and
v. Let us assume that the cluster-heads u and v do not know
about each other to start with. As mentioned before, node u
periodically sends out an extended hello message containing
cluster link-state information and the list of known cluster-
heads to all it dependents. Incidentally, node w becomes aware
of the presence of node v within its two hop neighborhood
through hello messages sent by node x. Thus, upon receiving
the extended hello message from u, the node w compares
the list of cluster-heads (contained in the extended hello
message) with the list of cluster-heads known to it through
hello messages. If there is a mismatch-match between these
two lists (which will be the case here as the list sent sent by
u will not contain v), the node w prepares an inter–cluster-
head message from the extended hello message by retaining
the self cluster link-state information and the cluster-head list
fields (and chopping off the rest of the fields) and sends it
the cluster-heads that are missing in the list sent by u. Thus,

in this case, node w will send the inter–cluster-head message
to node v. This way, node v can discover that u is a cluster-
head (from the self cluster link-state information). Similarly,
node u can learn about node v through an inter–cluster-head
message from node x or through a subsequent inter–cluster-
head message from node v. Because neighbor cluster-heads are
cluster-heads in three-hops, all neighbor cluster-heads discover
each other, consequently.

Non-neighbor–cluster-head discovery

The procedure for non-neighbor–cluster-head discovery is
performed similar to that of neighbor–cluster-head discovery.
Once a cluster-head receives an inter–cluster-head unicast
message, it parses the cluster-head list to look for any known
cluster-heads that is not contained in the received list. If it finds
known cluster-heads that is not contained in the list, it forwards
the received inter–cluster-head message to the missing cluster-
heads immediately, which in turn can learn about the original
cluster-head that sent the inter–cluster-head message. The
procedure for forwarding the inter–cluster-head message to the
missing cluster-heads is discussed in Algorithm 2. Once each
undiscovered pair of cluster-heads exchange their cluster link-
states, they will be aware of each other; discovery is done.

By neighbor–cluster-head discovery, all neighbor cluster-
heads are discovered. By non-neighbor–cluster-head discovery,
link-states are forwarded to unknown cluster-heads, which
results cluster-head discovery for the receiver of the forwarded
link-state. As a result, in a connected network, all cluster-heads
are discovered through the link-state forwarding procedure by
Lemma 1.

Algorithm 2 Basic link-state propagation to undiscovered
cluster-heads
Ensure: Decision to be a cluster-head
Require: Inter–cluster-head message M is arrived.

1: M := [L, V (msg)
C]

2: L: delivered cluster link-state
3: V (msg)

C : Cluster-head list in inter-coord. msg.
4: V (rx)

C : known cluster-heads of the receiver

5: V (uncovered)
C ⇐ V (msg)

C \ V (rx)
C

6: if V (uncovered)
C 6= ∅ then

7: Mnew ⇐ [L, V (rx)
C ∪ V (uncovered)

C]
8: send Mnew to the nodes ∈ V (uncovered)

C by unicast
9: end if

V. MCLSR IMPLEMENTATION

A. Test bed Platform

We implemented MCLSR on top of IEEE 802.11a protocol.
IEEE 802.11a has 12 orthogonal channels in 5 GHz band.
In practice, at most 5 or 6 channels can be concurrently
used with the off-the-shelf devices in accordance with our
measurements. The protocol is implemented on Linux 2.4.6
kernel. The main MCLSR protocol runs as a service daemon,
and system-oriented parts, like hooking packets and combining

two radio interfaces, are embedded in the kernel, as kernel
modules. Madwifi driver was used for IEEE 802.11 device
driver and modified to obtain short channel-switching time.
Basic software architecture is borrowed from Net-X system,
so the readers who are highly interested in the software
architecture may refer to [8].

Fig. 5. A picture of test bed

B. Performance Measurements

Fig. 6. A deployed node for experiments

a) Route discovery time: Military networks are time- and
mission-critical communication environment. Time required
for a route discovery is an important metric in military
networks. We have measured route discovery time of MCLSR
and the reactive protocol. To measure route discovery time,
fifteen Soekris boxes (Fig. 5) were deployed on the fourth
floor of Coordinated Science Laboratory building of University
of Illinois, running either MCLSR or Net-X reactive routing
protocol. Each box has two Atheros 802.11a interfaces as a
fixed and a switchable interfaces. Fig. 6 depicts our monitoring
program, which displays 15 running nodes in the building.

The source node in the route discovery time measurement
is Node 6 in Fig. 6, which is the node at the top-right corner.

It constructed routes to all other nodes and measured the
packet turn-around time one by one. Fig. 7 shows trivial
results that MCLSR has much shorter route discovery time
than reactive routing. Because reactive routing has to discover
a route using broadcast flooding, it requires certain amount of
waiting time to gather enough information in order to build
efficient routes. However, MCLSR is ready for transmitting a
packet beforehand.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

C
D

F

initial round trip time (ms)

MCLSR
Reactive

Fig. 7. CDF of packet turn-around time to measure route discovery time for
MCLSR and reactive routing.

b) Goodput comparison: We also measured average end-
to-end goodput in a random communication scenario. At this
time, 23 nodes were deployed in a building, 8 more than the
previous experiment, making maximum four hop routes, which
is quite similar to Fig. 6. Three communication channels are
selected and used for the measurement. In this experiment,
every node initiated UDP traffic at a random time to a random
destination for a certain amount of time in a certain amount
of data rate to realize random communications. And, average
end-to-end goodput was measured.

The detail of the experiment is as follows. Before experi-
ments, every node chose communication starting time between
0 and 90 seconds at random. And, it also selected a target node
uniformly at random among all the other nodes. Traffic was
generated from the chosen starting time to the selected target.
Traffic from a source node was sustained for a given time,
called communication duration, which varies on each run from
2 s to 10 s, and then the source node stopped generating traffic.
The data rate per flow also varies on each run, which is either
0.8 Mbps or 1.6 Mbps in our experiment. UDP packet size
was 1024 bytes. Every experiment used the same trace of a
packet generation pattern to make the comparison fair enough.
The experiment ran with either reactive routing or MCLSR.

To capture per-flow goodput, the target node returned ac-
knowledgement packets at the last 20 packets of the traffic,
which contained the amount of the delivered data. The source
node divides delivered data by the duration from the first
packet transmission to the last ack reception, to calculate the
goodput. Fig. 8 shows average per-route goodput with respect
to communication duration per flow. For each communication
duration and routing protocol, five runs were performed and

the performance was averaged. When each communication is
alive shortly, MCLSR performs better because the reactive
routing needs route discovery overhead, which consumes time
and communication resources. As communication residence
time goes longer, the performance gap between MCLSR and
the reactive routing become closer. Notice that many military
communications are time-critical and bursty based on strategic
decision. The result shows that link-state routing such as
MCLSR is more suitable for military networks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10
P

er
-f

lo
w

 g
o
o
d
p
u
t

(M
b
p
s)

Communication duation per flow (s)

MCLSR: 0.8Mbps
Reactive: 0.8Mbps
MCLSR: 1.6Mbps
Reactive: 1.6Mbps

Fig. 8. Average per-route goodput when for MCLSR and reactive routing
with respect to communication duration per flow.

VI. CONCLUSION

Multi-Channel Link-State Routing (MCLSR) protocol for
time-critical applications, like military networks, is designed
and proposed. It is tailored for multi-channel multi-interface
wireless networks using the idea of cluster-heads to minimize
broadcast overhead in multi-channel networks. The protocol
was implemented on top of IEEE 802.11a test beds, and the
performance was measured. The result shows that MCLSR
provides transient route discovery time and lower packet drop
rate, which is important in mission-critical networking.

REFERENCES

[1] R. Draves, J. Padhye, and B. Zill, “Routing in Multi-Radio, Multi-Hop
Wireless Mesh Networks,” in Proc. of ACM MobiCom, 2004.

[2] Y. Yang, J. Wang, and R. Kravets, “Designing Routing Metrics for Mesh
Networks,” in Proc. of IEEE WiMesh, 2005.

[3] P. Kyasanur and N. H. Vaidya, “Routing and Link-layer Protocols for
Multi-Channel Multi-Interface Ad Hoc Wireless Networks,” SIGMOBILE
MC2R, vol. 10, no. 1, Jan. 2006.

[4] P. Jacquet, P. Mũhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Vi-
ennot, “Optimized Link State Routing Protocol for Ad Hoc Networks,”
in Proc. of IEEE INMIC, 2001.

[5] P. A. Spagnolo and T. R. Handerson, “Comparison of Proposed OSPF
MANET Extensions,” in Proc. of MILCOM, 2006.

[6] R. Sivakumar, P. Sinha, and V. Bharghavan, “CEDAR: A Core-Extraction
Distrubited Ad Hoc Routing Algorithm,” IEEE Journal On Selected Areas
in Communications, vol. 17, no. 8, pp. 1454–1465, Aug. 1999.

[7] D. B. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc
Wireless Networks,” The Springer International Series in Engineering
and Computer Science, vol. 353, pp. 153–181, 1996.

[8] C. Chereddi, P. Kyasanur, and N. H. Vaidya, “Net-x: a multichannel multi-
interface wireless mesh implementation,” in Proc. of ACM REALMAN,
2006.

