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Abstract

The advances in wireless networking have enabled new
paradigms in computing. An abundance of information and
services provided by remote servers is expected to become
available to wireless users. A fundamental issue in this en-
vironment is efficiently locating needed content. Such con-
tent may be in the form of files, services, or any other kind
of data. In this paper, we describe an algorithm for effi-
cient content location in location-aware ad hoc networks.
The Geography-based Content Location Protocol (GCLP)
makes use of physical location information to lower proac-
tive traffic while reducing query cost. The results of our
analysis show thatGCLP performs favorably in terms of
overhead and scalability.

1. Introduction

Explosive growth of the Internet has resulted in increas-
ing availability of information and services to networked
users. It has made sharing of data easier than ever with a few
simple clicks of the mouse button. File sharing service such
asNapsterhave demonstrated the need for creative proto-
cols for location and sharing of data. The need for avoiding
centralized responsibility and increasing stability has been
the driving force behind a variety of new approaches that
have been proposed for peer-to-peer file sharing.

The rise of mobile computing has further increased the
pervasiveness of devices capable of storing data and re-
quiring the ability to efficiently locate content and services.
Printers, for example, are a common need for a variety of
applications. Given a pervasive wireless network, the user
may not always be expected to know the location and char-
acteristics of the closest device/server.

A variety of algorithms have been proposed for resource
location (not necessarily in ad hoc networks). Some of the
first approaches to appear followed the centralized client-
server architecture. Some examples of such approaches are
presented in [1, 2, 3, 4, 5]. These models rely upon a cen-

tralized storage that would handle queries by users. Decen-
tralized approaches [6, 7, 8, 9, 10] remove the reliance upon
a central directory server but do not take link cost into ac-
count when computing routes. This can make them imprac-
tical for use in wireless ad hoc networks; ad hoc networks
are formed by wireless hosts without necessarily making
use of an infrastructure.

Some protocols have been proposed specifically for ad
hoc networks as well [11, 12, 13, 14, 15]. A novel ap-
proach to disseminating service information is described in
[16, 17]. [16] proposes the use of location information for
routing. The protocol provides for all nodes to periodically
send advertisements along geometric trajectories. Any node
that wishes to communicate with another node need sim-
ply send a query along a path that intersects with the ad-
vertisement path. The host that receives a query may then
send a reply to the requesting node. A similar idea is also
presented in [17]. [17] proposes propagating the advertise-
ments and queries in cross-shaped trajectories, thus guar-
anteeing two intersections. Queries are answered by nodes
at the intersection of the advertising and query trajectories.
This is a simple and elegant approach that may be modi-
fied to work for a variety of resources available in a net-
work. However, as the number of advertising servers grows,
the amount of proactive traffic becomes prohibitive. Both
of these algorithms assume that each node will advertise a
unique resource. This is not true, however, in many cases
since duplicate content may well exist in a network. An ex-
ample of such duplicate content may be several replicas of
a file hosted by different servers or an identical service pro-
vided by several nodes in the network. Under these condi-
tions, the above algorithms will not scale well since they
do not take measures to limit the overhead for duplicate re-
sources.

In this paper, we present a content location service, the
Geography-based Content Location Protocol(GCLP), that
takes physical location information into account to provide
an efficient content location service to nodes in an ad hoc
network. The content location service allows a user host
to locate a server that can provide desired content – “lo-



cating” a server can mean knowing its IP address, and/or
its physical location, whichever information is necessary
to subsequently route requests from the client to the con-
tent server. Note that our content location protocol does use
physical location information. However, the routing proto-
col used to deliver requests from clients to servers may or
may not use physical locations (the two protocols can be in-
dependently designed). The proposed content location pro-
tocol works best in dense networks. GCLP assumes that all
devices in the network know their own physical location.
Since GCLP is meant to operate in an ad hoc network, it is
important to summarize some of the properties of the envi-
ronment as they relate to the content location service. First,
we cannot assume a static topology. Nodes may join and
leave the network at any time and node mobility is an ac-
cepted occurrence. Second, the cost of making sure that ev-
eryone knows about everything is prohibitive. Thus, to lo-
cate a specific content, a device need not be aware of all
content available on the network. In such an environment,
GCLP nodes make use of geographic information to period-
ically advertise content they are hosting to nodes along sev-
eral geographical directions. Nodes that want to locate con-
tent should be able to locate any one server for that content,
preferably the closest one. The protocol proposed in this pa-
per tries to allow each client to find a nearby server, where
the geographical distance is used as the distance metric (not
number of hops). In a uniformly distributed dense network,
shorter geographical distance would typically translate into
smaller number of hops as well. While the protocol is not
designed for a specific network topology, we show that it
performs better in dense networks.

2. Geography-based Content Location Proto-
col (GCLP)

2.1. Protocol Overview

Nodes in the network may assume any of the following
roles, more than one if required. A Content Server (CS) is
a node that hosts one or more resources that may be used
by other nodes on the network. Such nodes are responsible
for advertising their hosted resources to the rest of the net-
work. Content Location Servers (CLS) are nodes that host
location information about one or more available resources
– locationof a resource may mean IP address of the corre-
sponding server, and/or physical location of the server, or
any other information useful for routing to the server. The
content location servers are responsible for providing re-
sponses to queries about specific content.Clientsare nodes
that request resources on behalf of an application or any
other higher layer.

The basic protocol follows the scheme described in [17].
Periodically, a content server will transmitupdate mes-

sages to specific nodes in the network. These updates ad-
vertise available resources and the content server that hosts
them. Update messages follow a suitable trajectory through
the network similar to the trajectory-based schemes de-
scribed in Section 1 [16, 17]. This significantly decreases
the amount of proactive traffic as it is limited to nodes along
the trajectories. Nodes along these trajectories cache the in-
formation received from the updates. A node that stores
such information becomes a content location server (CLS).
If it receives a query about content it knows the server of, it
will reply with the serverlocation.

A client may locate any content on the network by send-
ing out aquerymessage. The query is similarly propagated
along suitable trajectories. In a dense network, these query
trajectories are likely to intersect at at least one update tra-
jectory. The content location server (CLS) at the intersec-
tion point that receives the query responds with a reply mes-
sage that is sent back to the client. Upon receipt of a reply,
the client may establish a direct connection with the con-
tent server using the underlying routing protocol to make
use of the available resource. The queries follow a forward-
ing scheme that keeps their cost low while finding the clos-
est available server in the vast majority of situations (clos-
est is defined here in terms of physical distance). Finding
the closest content server available is an important benefit
as it generally (though not always) results in fewer hops be-
tween the client and the server, which, in turn, translates
into lower network overhead.

To make sure that all nodes in the network know the
physical location of all their neighbors in order to be able
to select next hop for the updates and queries, a third type
of message is used. Ahello message is periodically broad-
cast by each node in the network to its one-hop neighbors
to advertise the node’s physical position.

2.2. Protocol Details

This section discusses the content advertisement and
content discovery mechanisms inGCLP.

2.2.1. Content Advertisement:Content advertise-
ment is performed by periodically sending update mes-
sages through the network, similar to [17]. Each content
server periodically initiates advertisements by send-
ing update messages in four geographical directions, or
trajectories – North, South, East, and West. Each adver-
tisement specifies the location of a resource at the con-
tent server (CS). To accomplish this, the content server uses
the geographic location of its immediate neighbors to se-
lect the next content location server (CLS) in the given
direction. The algorithm for selecting next-hop nodes is de-
scribed in detail below. The update message is then sent
to that node. Upon receiving the update, the chosen con-
tent location server adds the information to itsContent Lo-
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Figure 1. A Content Server propagating up-
dates through the network. The server’s se-
lected content location servers are shaded.

cation Tableand uses the same algorithm to decide which
node in the direction of the update will be the next con-
tent location server. This continues until a node on the
fringe of the network discovers that there are no neigh-
bors in the sector along the update’s direction.

This basic advertising algorithm is exemplified in Fig-
ure 1. Here, update messages are being propagated for a
particular content server through the network in the four di-
rections. The nodes that are chosen to become content lo-
cation servers are shaded. Note that, on each hop, a certain
node is the intended receiver of the updates from a content
server, all nodes that overhear the updates also cache the
content server’s location information. Only the intended re-
ceiver is responsible for forwarding the update, however.

An important part of the protocol is the selection of the
content location server (CLS) nodes along the geographic
direction of an update message. In designing an algorithm
several heuristics may be used:

• Picking nodes closest to the line in the desired direc-
tion (e.g., South). This keeps the line of content loca-
tion servers straighter but may not be as efficient since
some content location servers may be needlessly close
to each other even if nodes are available farther away
generally in the desired direction.

• Picking nodes with greatest distance from the current
node. This may be more efficient as it provides for
greater spaces between neighboring content location
servers. However, this approach may lead to update
trajectories that are not straight.

• A combination of the two. This is the approach that we
take and we describe the exact algorithm below.

Note that, in our scheme, each node attempts to forward the
update in the desired direction (e.g., South) with respect to
its own location, not with respect to location of the origina-
tor of the update. (However, the latter alternative may also
be worth evaluating.)

In [17], the authors propose using the first two ap-
proaches above for selecting next hop nodes in the update
path, i.e., select nodes farthest away from the current node
or select nodes closest to the trajectory line. We modify
this basic selection algorithm as follows. When selecting
next hop content location servers, we would like to achieve
two things–cover a larger distance between content loca-
tion servers and keep the update trajectory as straight as
possible. To accomplish this, each node in the 90◦ sector
along the trajectory is assigned a rating based on Equation
1, whereR is the rating for the given node in the sector,d
is the distance from the node making the decision, andr
is the offset from the geographical direction line. This algo-
rithm allows for nodes farther away and closer to the perfect
trajectory to have highest ratings. It also means that the tra-
jectory is defined in terms of the current node making the
decision and not only the original server.

R = d/r (1)
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Figure 2. A node picks the next hop for an up-
date message among nodes in the appropri-
ate sector.

This is further clarified by Figure 2. A node,S, is consid-
ering three possible candidates in the desired sector,A, B,



andC. Based on the formula provided, nodeB will be se-
lected as the next hop in the trajectory as it will have the
highest rating.

The selection of 90◦ as the sector size is dictated by the
need to increase node availability in each sector, particularly
in sparse networks. Small sector sizes would not be suitable
since the above rating will tend to prefer nodes closer to the
trajectory (when the sector size is too small). Thus, we can
only benefit from allowing more nodes to be considered for
selecting next hop neighbors in the update and query trajec-
tories. If a node cannot find a neighbor in a given sector that
it is trying to transmit to, the trajectory in the given direc-
tion is interrupted. (In mobile environments, when deciding
whether to interrupt a trajectory or not, the staleness of the
cached information about other known servers can be taken
into account. This is, however, not implemented in the sim-
ulated scheme.)

As described until now, the protocol is simply a variation
on [17] and, like [17], does not scale well. It does not deal
with the possibility of more than one content server (CS)
hosting the same resource in the network. Next, we describe
a major component of our protocol that provides for proto-
col scalability. If update messages for duplicate resources
are allowed to propagate throughout the network, the re-
sulting traffic will be overwhelming since it would increase
linearly with the number of servers hosting the same con-
tent. Instead, each content location server (CLS) chooses
whether to forward an update message or not. If a content
location server receives multiple advertisements for a par-
ticular resource, it will only forward updates from the con-
tent server closest to it. In case there is a tie, the content
location server will continue to propagate updates from the
first server it received advertisements from. (A content loca-
tion server may initially be forwarding advertisements from
a distant content server before it learns of the closest server;
however, once it learns of a closer server, advertisements
from distant servers are not forwarded anymore.) The re-
sulting advertisement grid allows for scalability of the pro-
tocol as each additional replica of a resource will introduce
less and less proactive traffic into the network. An exam-
ple is shown in Figure 3 – note that the updates sent by all
the servers do not always travel to the edges of the network.
This method also has the important property that content
location servers will typically know the location of servers
close to them.

2.2.2. Content Discovery:To locate content on the net-
work, a client sends out a query message through the net-
work in a manner identical to the update messages. A query
is sent in the four geographical directions. The next hop in
the query trajectory is selected using the same algorithm de-
scribed in Section 2.2.1. Acontent location serverthat re-
ceives a query message will send a query reply message to
the requester. To reduce the possibility of a query slipping
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Figure 3. Several servers advertise availabil-
ity of the same resource.

through the advertising trajectory without finding a content
location server, all nodes in the range of a node sending or
forwarding a query may answer – thus, the requester may
receive multiple replies. While this modification does not
completely eliminate the above possibility, the modifica-
tion significantly reduces the possibility as shown by our
simulations. The reply messages follow greedy geographic
routing with each node forwarding the packet to its neigh-
bor closest to the destination; other more sophisticated ge-
ographic routing schemes, or other routing protocols may
also be used. Potentially, the cost of forwarding the multi-
ple replies can be reduced by requiring each intermediate
node to forward at most one reply; such an optimization is
not evaluated in this paper.

The content discovery process is exemplified in Figure
4. Here a client sends out queries through the network in
four directions. Once the queries reach a content location
server along the update trajectories, it answers with a re-
sponse message. The client may receive more than one re-
sponse messages to the same query. In such a case, it picks
the response identifying a content server closest to its geo-
graphical location.

3. Analysis of GCLP

In this section we provide a simplified analysis of the
Geography-based Content Location Protocol. It is impor-
tant to note that the network under consideration in this
section is a hypothetical dense network with nodes at each
point in space. Thus, physical distance is proportional to



hop count (in the context of the hypothetical dense network,
a hop is assumed equal to one transmission range). In prac-
tice, the results of this section will apply best to very dense
networks. However, they also provide hints on how the pro-
tocol will perform in networks that may not be very dense.

3.1. Correctness Argument

We argue that, in a dense network, at least one inter-
section of update trajectories and query trajectories exists.
Even with some update trajectories being interrupted by up-
dates from closer content servers, we need to show that at
least one trajectory will propagate in each one of the four
geographical directions. The correctness argument is simple
and is illustrated in Figure 5. We have two content servers,
S1andS2. Two content location servers,A andB, interrupt
some update trajectories and forward others. To see that at
least one trajectory is propagated in each direction, let us
observe what happens at a point where a trajectory is inter-
rupted, such as pointB in the figure. It is sufficient to ob-
serve that in order for one trajectory to get interrupted, such
as the trajectory fromS1, there must exist a server, such
asS2, whose perpendicular trajectory causes the interrup-
tion at that point. Such a server would be propagating its
own updates in the direction of the interrupted trajectory.
Thus, there is at least one update trajectory in each direc-
tion.
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Figure 4. A client attempts to locate content
by sending queries through the network. The
queries are answered once they reach a con-
tent location server.
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Figure 5. At least one trajectory will propa-
gate in the direction of an interrupted update
trajectory.

3.2. Scalability Analysis

To provide analytical model of our protocol, we examine
the performance of the protocol in the two extreme cases:
when there is a single server in the network and when all
nodes in the network are servers. We then consider how
the proactive traffic introduced by update messages changes
with growing the number of servers in between the two ex-
tremes.

In the first case, we have a single content server in the
network for a given resource. Consider a network of dimen-
sionsw by l hops. Any update sent by the content server in
the four directions will travel along the length and breadth
of the network area. Thus, in the case of a single content
server, the cost isO(w+l).

In the other extreme, consider the case where all nodes in
the network host the same content. In this case, the updates
from each host will be ignored by their next hop neigh-
bors because they are themselves content servers serving
the same content. Thus, the cost of each individual update
is O(1), giving a total cost in the network ofO(n), wheren
is the number of content servers in the network. In between
the two extremes, we argue that the protocol overhead gen-
erated per server drops rapidly as new servers are added to
the network [18].

Our simulations show that the overhead traffic of the pro-
tocol indeed scales well and adding servers leads to a rapid
drop in update traffic per server. The scalability of the pro-
tocol is also seen in the simulation results presented in Sec-
tion 4.



3.3. Response Analysis

A desired property for the proposed protocol is the abil-
ity of queries to locate the closest content server available.
However, under certain conditions, this may not be possible.
This anomaly is shown in Figure 6. There are two servers
in this setup,S1andS2. They propagate their updates ac-
cording to the protocol described in Section 2.2.1. A con-
tent location server,CLS1, at the intersection of the two tra-
jectories fromS1andS2will only propagate updates from
the server closer to it. In the figure, this means that only up-
dates fromS1will be propagated byCLS1.

Let us consider the different possible positions of a client
in this environment defined by the update trajectories from
S1 and S2 and the line,l, which defines the set of points
of equal distance to both servers. If a client is on the side
of l whereS1 is located, thenS1 is the closest server to
that client. Queries sent in that sector will intersect at least
one update trajectory from S1 thus resulting in discovering
the closest server. If a client is located on the side ofl to-
wardsS2and not betweenl and the downwards update tra-
jectory fromS1(i.e., not in the regionR in the figure), then
it is closest toS2and queries from such a client will inter-
sect at least one update trajectory fromS2, thus again find-
ing the closest server.

The problem occurs when a client,Q, is located in the re-
gionRbounded by the linel and the downwards update tra-
jectory fromS1. In this region,S2is the closest server. How-
ever, a query will be answered by a location server,CLS2,
positioned on the downwards trajectory fromS1resulting in
locating a server that is not the closest one,S1instead ofS2.
Notice, that a similar region exists,R′ whereS1 is the clos-
est server but onlyS2 can be found. In this section we prove
that even in this situation, in the worst case, the error is rel-
atively small when compared with the actual distance to the
closest content server. This error is measured as the ratio
QS1/QS2, whereQS1is the distance betweenQ andS1and
QS2is the distance betweenQ andS2.

First, let us examine how the motion ofQ along a line
m perpendicular to the linel affects the ratio. It is easy
to see that any move ofQ farther froml is moving it far-
ther away fromS1 and closer toS2, increasing the ratio
QS1/QS2. Thus, asQ is closer to the update trajectory, the
ratio will be larger, giving us a greater error. For the pur-
poses of the following analysis, we assume the worst case
whereQ is actually on the trajectory line itself.

Let us express the ratio ofQS1/QS2in terms of the dis-
tancesa, b, andc, as shown in Figure 6. Equation 2 shows
this formula.

QS1/QS2 = (a + c)/(
√

b2 + c2) (2)

Starting from the above expression, it can be shown that,

QS1/QS2 ≤
√

2 (3)
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Figure 6. A client, Q, may locate a resource
on a more distant server, QS1, instead of the
closer QS2.

According to Equation 3, our protocol allows (in the hy-
pothetical dense network) a host to learn about a content
server that is at a distance no larger than

√
2 times the dis-

tance from the closest content server. In practical networks,
which are not very dense, this result is not directly applica-
ble, but suggests that the proposed protocol has the poten-
tial to locate nearby servers.

4. Simulation Results

In this section we evaluate the performance of our pro-
tocol in a simulated environment. Thens-2simulator was
used to simulate a variety of network conditions. The area
over which the simulated network was situated was 2000
by 2000 meters. Several network densities were simulated.
For each case, 20 simulations were run and the results were
averaged to produce the presented data. A sparse network
of 50 nodes, moderate density networks of 100 and 200
nodes, and a dense network of 500 nodes were simulated.
Static topologies are first evaluated. Nodes are placed at
randomly chosen locations within the given area. Different



node placements are chosen for each of the 20 runs. In ns-
2, we created the nodes during the first 5 seconds, and they
were designated as content servers at between 10 and 15
seconds from start of the simulation (thus, initially, the cre-
ated nodes are not servers, but become servers over time).
Queries are performed after all desired servers have been in-
stantiated. Each content server sends updates every 30 sec-
onds. To study the effects of mobility, a moderate density
network of 100 nodes was evaluated with varying nodes
speeds. The Random Waypoint mobility model from ns-2
simulator was used to simulate node mobility (all nodes in-
cluding the content server move when mobility is consid-
ered). Transmission range is assumed to be 250 meters. We
use the following metrics to evaluate the proposed proto-
col:

• Update Cost: This measure captures the normalized
cost incurred by content servers performing location
updates. For each update initiated by each server, the
update message travels several hops (in four differ-
ent directions). Each such hop is counted as one up-
date message. Theupdate costis calculated as the to-
tal number of update messages required, divided by the
total number of updates initiated by the servers, and by
the total number of content servers.

• Query Cost: This measure is used to quantify the cost
of searching the network for required content. When
a node initiates a query, it may be forwarded on sev-
eral hops (in different directions).Query costis cal-
culated as the total number of hops taken by all the
queries, divided by the number of queries initiated. In
our simulations, each node in the network initiates a
query once. Generating query once per node is enough
in static networks, since the average cost of the query
will not vary over time. For mobile scenarios, this is
not always adequate, and additional evaluations need
to be performed.

• Success Rate: The accuracy of our protocol is mea-
sured by this metric. Success rate is calculated as the
number of queries that receive responses, divided by
the total number of queries initiated. If a query receives
more than one response, it is only counted as success-
ful once.

4.1. Effects of Network Density

This section studies the effects of node density on the
performance ofGCLP. While the protocol is not designed
for a specific network topology, we show that it performs
better in denser networks.

4.1.1. GCLP in Moderate-Density NetworksAs seen in
Figures 7 and 8, the update cost per server decreases rapidly
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Figure 7. Update cost in a network of 100
nodes as a function of number of servers.

 4

 6

 8

 10

 12

 14

 16

 18

 0  20  40  60  80  100  120  140  160  180  200

U
pd

at
e 

C
os

t

Servers

200 nodes

Update Messages

Figure 8. Update cost in a network of 200
nodes as a function of number of servers.

with the addition of new servers, and then becomes essen-
tially constant. This pattern is also implied by the analy-
sis in Section 3.2. (Due to the manner in which the servers
are instantiated during first 15 seconds of the simulation, as
elaborated earlier, we believe that that update overhead is
slightly higher, as compared to the case when all servers are
instantiated at the start of the simulations.)

The amount of query traffic also decreases rapidly with
the addition of servers. This is to be expected as the grid
grows denser and more nodes have the ability to answer
queries. This observation is supported by the data in Fig-
ures 9 and 10. Query cost becomes zero when number of
servers is large, because with large number of servers, each
host is either a content server or already knows location of
a nearby content server (due to updates sent by the content
servers).
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Figure 9. Query cost in a network of 100
nodes.
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Figure 10. Query cost in a network of 200
nodes.

The success rate for queries is virtually 100 percent in
many cases. This is not true, however, for the cases of small
numbers of servers and particularly in the less dense 100-
node network. When the network is not very dense, some
query paths may not intersect with any update path. How-
ever, as redundancy is introduced with the addition of new
servers, the success rate quickly grows. This trend is seen in
Figures 11 and 12.

4.1.2. GCLP in High-Density Networks To simulate a
high-density network, 500 nodes were placed in an area of
2000 meter by 2000 meter. Figure 13 shows the scalabil-
ity property of the protocol as a growing number of servers
rapidly leads to lower update traffic per server and, eventu-
ally, a constant update traffic per server for large numbers
of servers (as expected from Section 3.2).
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Figure 11. Success rate in a network of 100
nodes as a function of the number of servers
available on the network.
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Figure 12. Success rate in a network of 200
nodes as a function of the number of servers
available on the network.

The cost of queries also decreases quickly with growing
numbers of servers. This is shown in Figure 14. At the same
time, the success rate is virtually 100 percent for any num-
ber of servers, as shown in Figure 15. This is due to the good
connectivity of the network with high density.

4.1.3. GCLP in Sparse NetworksThe performance of
GCLPin sparse networks is evaluated next. Figure 16 shows
that proactive traffic per server does not seem to vary sig-
nificantly with the number of servers. This is due to the low
connectivity of the network. In such an environment the per-
formance of the protocol is lowered by the inability of nodes
to establish connections with each other due to limitations
of their transmission range.
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Figure 13. Update cost in a network of 500
nodes as a function of number of servers.
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Figure 14. Query cost in a network of 500
nodes.

In the sparse network, the cost of queries does not de-
crease as fast with the number of servers as in denser net-
works. This is shown in Figure 17. The reason behind this is
again the lower connectivity. As seen in Figure 18, the suc-
cess rate grows slowly with the number of servers because
of the increased difficulty of propagating the updates and
queries in a low-density environment.

4.2. Effects of Mobility

We have done some preliminary evaluation in mobile
environments. The results here should not be considered
conclusive, since additional experimentation is necessary to
gain adequate confidence in the data. The network under ex-
amination is a moderately dense network of 100 nodes with
250 meters transmission range, deployed in an area of 2000
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Figure 16. Update cost in a network of 50
nodes as a function of number of servers.

by 2000 meters. To measure the effects of node mobility,
scenarios with node speeds of 10 m/s, 20 m/s, and 30 m/s
are compared against the data from a static network. The
same measures of overhead traffic and query efficiency are
used to analyze performance as described in Section 4.

Figure 19 show that overhead traffic remains virtually
unchanged when mobility is introduced into the network.
Thus, our protocol appears to perform well under condi-
tions where node mobility exists. However, we believe that
more extensive simulations are necessary to confirm this
observation. With mobile content servers, accuracy of the
physical location information changes with time. This ac-
curacy is not measured in our evaluation with mobility, and
can become important if geographical routing is to be used
by clients to communicate with the content servers (on the
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Figure 18. Success rate in a network of 50
nodes as a function of the number of servers
available on the network.

other hand, if our content location service is merely being
used to determine the IP address of a content server, then
the accuracy of the physical location of the content server is
not as important).

The cost of locating content does not seem to vary signif-
icantly with the changes in node speed. As Figure 20 shows,
the hops travelled by query messages per location attempt
is similar for the static and dynamic topologies.

An interesting phenomenon occurs when considering
query success rates. As Figure 21 shows, increased node
mobility actually seems to lead to small increases in query
success rates for small numbers of servers. This is due to the
fact that mobile nodes will lead to location information be-
ing present in more parts of the network as nodes formerly
located along the update paths travel through the network

 4

 5

 6

 7

 8

 9

 10

 0  10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 U
pd

at
e 

C
os

t

Servers

Update Cost with Mobility

0 m/s
10 m/s
20 m/s
30 m/s

Figure 19. Update cost in a network of 100
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Figure 20. Query cost in a network of 100
nodes for different node speeds.

and answer queries.

5. Conclusions and Future Work

In this paper we have presented a protocol for con-
tent discovery in location-aware mobile ad hoc networks.
The protocol, Geography-based Content Location Protocol,
GCLP, uses location information to achieve scalability and
cost effectiveness as measured by distance between clients
and discovered servers. Simulation results demonstrate that
GCLP is indeed an efficient content discovery scheme.

Several optimizations and variations onGCLPare plau-
sible.

• One optimization is to allow nodes to suppress their
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Figure 21. Success rate in a network of 100
nodes as a function of the number of servers
available on the network for different node
speeds.

updates in a specific direction if they already have a
neighbor in the given direction that is serving the same
content. This can reduce update cost. Alternatively,
the nodes may selectively send updates in a greater or
smaller (than four) number of directions, with the ac-
tual directions and their number being chosen to meet
a desired update cost versus query cost trade-off. Sim-
ilarly, the directions of updates may also be changed
over time.

• Attempting to route queries and updates in a straight
line can become difficult when their are obstacles that
create “holes” in the network topology. Thus, possible
optimization that aims at rerouting trajectories around
such regions in the network (similar to geographical
routing schemes). Care must be taken to achieve fa-
vorable trade-off between the update overhead and the
ability to disseminate updates along desired directions,
when such rerouting schemes are used.

• Another variation is to use a different heuristic for se-
lecting next hops on update trajectories. For instance,
the heuristic may give more weight to the distance be-
tween the nodes or to the deviation from the perfect
trajectory (e.g., using ratingR = d2/r). Also possi-
ble is the consideration of other factors. For example,
the age of entries in the neighbors table may be used to
give more weight to more recent entries.

• In our algorithm, we assumed that each node knows
the physical location of the nearby nodes. This infor-
mation is used in choosing the next node on update tra-
jectories. An alternative is to allow each node to sim-
ply broadcast an update including its own location in-
formation, and the desired direction for the next hop,

without explicitly specifying the next node that should
forward the update. Each node hearing this update can
independently decide whether it should forward the
update or not. One approach for implementing this
as follows: When a node B hears an update message
transmitted by node A (including A’s physical loca-
tion), node B first determines whether it is “approxi-
mately” in the direction in which the message is to be
propagated. If the answer is affirmative, then node B
chooses a “backoff interval” that varies inversely with
its “ratingR” (R may be evaluated in a variety of ways
– note that B knows its own location, so B can take
into account locations of A, B and the desired direction
in evaluating ratingR). Essentially, nodes that have a
higher rating will tend to choose a lower backoff in-
terval. Subsequently, node B waits for duration of the
backoff interval (analogous to the IEEE 802.11) and
forwards the update if B does not hear another node
forwarding the same message in the desired direction.
Clearly, many variations on this basic mechanism are
also possible.

Further work is also needed to evaluate content location in
mobile environments. This paper presented a preliminary
evaluation. However, the trade-off between accuracy of lo-
cation information obtained by clients, and the overhead in
propagating the location information has not been evaluated
in this paper. New techniques may have to be developed to
improve this trade-off.
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