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Distributed Optimization

B Server maintains estimate x;,

In each iteration

m Each agenti
® Receives x;, from server
® Uploads gradient V£;(x;)

®m Server updates estimate
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Server observes gradients =» privacy compromised

Achieve privacy and yet collaboratively optimize



Decentralized Optimization

® Each agent maintains local estimate x

In each iteration

m Compute weighted average with neighbors’ estimates
® Apply own gradient to own estimate

® Local estimates converge to  argmin E fi(x)
/‘ |




x [t+1]= %xl [¢]+ %x3 [t]- A, V£fi(x,[t])

1 1 1
x,[t+1]= gxl [1]+ gxz[t] + §x3[t] - A V£ (x,[1])



Peer-to-Peer Architecture

® Neighbors can potentially learn information about an
agent’s cost function




Approaches for Privacy
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Approaches for Privacy

m Cryptographic methods
m Differential privacy

B Function transformation
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Encryption

m Basic idea: Agents send
encrypted information to the
server (or peers)

m Server performs computation
on encrypted data

B Need practical/efficient
encryption mechanisms
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Differential Privacy

m Agents add Laplace distributed noise to the gradients
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https://dl.acm.org/doi/10.1145/2810103.2813687

Differential Privacy for Machine Learning

[ ]

m Agents add Laplace distributed noise to the gradients
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Goal: Make it difficult to determine if a particular
data item was used during training


https://dl.acm.org/doi/10.1145/2810103.2813687

Differential Privacy
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Trade-off privacy with accuracy
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Decentralized Optimization

® Each agent maintains local estimate x

In each iteration

m Compute weighted average with neighbors’ estimates
® Apply own gradient to own estimate

® Local estimates converge to  argmin E fi(x)
/‘ |




x [t+1]= %xl [¢]+ %x3 [t]- A, V£fi(x,[t])

1 1 1
x,[t+1]= gxl [1]+ gxz[t] + §x3[t] - A V£ (x,[1])



Differential Privacy for
Peer-to-Peer Architecture

[ , ]

m Agents add noise to their estimate before sharing
with the neighbors
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https://dl.acm.org/doi/10.1145/2684464.2684480
https://arxiv.org/abs/1401.2596

Other Work

B Several other papers on differential privacy for
optimization (such as ,

)
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https://arxiv.org/pdf/1806.06035.pdf
https://arxiv.org/pdf/1903.07792.pdf

Federated Architecture
[ ]

B Server maintains estimate x;, N
k

Server
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https://arxiv.org/abs/1912.04977

Federated Architecture
[ ]

B Server maintains estimate x;,

Xk

In each iteration

Server

® Each agenti

® Receive x,, from server
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https://arxiv.org/abs/1912.04977

Federated Architecture

B Server maintains estimate x;, N
k

Server

In each iteration ; \
/ }’3

® Each agenti
® Receive x,, from server ‘ ‘
® CompUte Vie = X — Akai(Xk)

® Send y, to server




Federated Architecture

B Server maintains estimate x;, N
k

Server

In each iteration 7 \
/ }’3

m Each agenti
® Receive x,, from server ‘ ‘
° CompUte Vie = X — }lkVﬁ(Xk)

® Send y, to server

B Server updates estimate

1
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Federated Architecture

B Server maintains estimate x;, N
k

Server
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® Each agenti
® Receive x,, from server ‘ ‘
° CompUte Vie = X — }lkVﬁ(Xk)

® Send y, to server

B Server updates estimate

1
Xk+1 € Ez Vi



Federated Architecture

B Server maintains estimate x;, N
k

Server

In each iteration - \
/ Y3

m Each agenti 3} \
® Receive x,, from server
® Compute v, = xx — A Vfi(xk)

® Send y, to server \

®m Server updates estimate

1
Xk+1 € Ez Vi

Replace single step

by multiple steps




Private Federated Learning

[ ]

B Agents cooperate to compute ), y; while preserving
privacy of individual y; values

B Each pair of users communicates over secure channels
to agree on matched pair of “noise”

® User u sends noise s, to user v
® User u obfuscates on y, value as below, for “large enough” R

Z,= ( Yu + ZVSV,U- zvSu,v) mod R

® Server can compute ¥, y, correctly as ¥, z, mod R without
being able to learn individual agent’s estimate

Further improvement described in [ ]


https://arxiv.org/abs/1611.04482
https://arxiv.org/abs/1611.04482

Secure Sum

B Similar concept introduced in |
secure aggregation

] for
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https://alo.mit.edu/wp-content/uploads/2015/06/Privacy-Preserving-Methods-for-Sharing-Financial-Risk-Exposures.pdf

Balanced Noise

m Exploit diversity ... Multiple servers / neighbors

B [ntroduce noise that is “cancellable”

[ ] also introduce balanced
noise, but it is ut|I|zed differently (also, no modulo operation
used in schemes to be presented next)
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https://arxiv.org/abs/1611.04482
https://alo.mit.edu/wp-content/uploads/2015/06/Privacy-Preserving-Methods-for-Sharing-Financial-Risk-Exposures.pdf

Server-Based Architecture: Balanced Noise

[ , ]

Server 1 Server 2

pha=t

Privacy if subset of servers adversarial
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https://arxiv.org/pdf/1608.03866.pdf
https://arxiv.org/abs/1608.05401

Balanced Noise

B Structured noise that

“cancels” over servers/neighbors
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Intuition

x! x?

Server 1 Server 2

pha=
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Intuition

x! x?

Server 1 Server 2

\ N>/

f11f12 f21f22 f31f32

Each client
simulates
multiple clients
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Intuition

x! x?

Server 1 Server 2

\ N>/

fi1 fiz f21 /22 f31f32
fi1(x) + f12(x) = f1(x)

fij(x) not necessarily convex



Algorithm

B Each server maintains an estimate
In each iteration

m Client
® Download estimates from corresponding server
® Upload gradient of f;

B Each server updates estimate using received gradients



Algorithm

B Each server maintains an estimate
In each iteration

m Client
® Download estimates from corresponding server
® Upload gradient of f;

B Each server updates estimate using received gradients

m Servers periodically exchange estimates to perform a
consensus step



Claim

m Under suitable assumptions, servers eventually reach
consensus in

argmin Z fi(x)

l
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Privacy

fi1t f21+f31 fi2+ fa2+f32

Server 1 Server 2

\\></

f11f12 f21f22 f31f32

37



Privacy

fi1t f21+f31 fi2+ fa2+f32

Server 1 Server 2

\\></

f11f12 f21f22 f31f32

m Server 1 may learn fi1, o1, fa1, fiz+ f22+[30
m Not sufficient to learn f;
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fi1(x) + f12 (x) = f1 (x)

B function splitting not necessarily practical

m Structured randomization as an alternative
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Structured Randomization

®m Multiplicative or additive noise in gradients

m Noise cancels over servers
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Multiplicative Noise

x! X?

Server 1 Server 2

pha=t
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Multiplicative Noise

x! X?

Server 1 Server 2

f1 f2 f3
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Multiplicative Noise

x! x?
Server 1 Server 2
\ -
aVfi(x') \ BVAGD)
~
fi /> f3

a+p=1
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Multiplicative Noise

x! x?
Server 1 Server 2
\ -
aVfi(x') \ Bh (x?)
~
fi /> f3

Suffices for this invariant to hold

a+p=1

over a larger number of iterations



Multiplicative Noise

it X?
Server 1 Server 2
\ -
aVfi(x') \ B (x?)
~
f1 f2 f3

Noise from client it r ]
a+,[>’=1 O server |

not zero-mean




Claim

m Under suitable assumptions, servers eventually reach
consensus in

argmin Z fi(x)

l
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Peer-to-Peer Architecture

[ , 2017,

47


https://arxiv.org/abs/1612.05236
https://arxiv.org/abs/1703.09185
https://arxiv.org/abs/1905.00733
https://arxiv.org/abs/2004.01312

Balanced Noise

[ , 2017]

m Each agent shares noisy estimate with neighbors

® Scheme 1 — Noise cancels over neighbors
® Scheme 2 — Noise cancels network-wide

P



https://arxiv.org/abs/1612.05236
https://arxiv.org/abs/1703.09185

Balanced Noise

[ , 2017]

m Each agent shares noisy estimate with neighbors

® Scheme 1 — Noise cancels over neighbors
® Scheme 2 — Noise cancels network-wide

X+ g

>

& +& =0 (over iterations)

X+ &



https://arxiv.org/abs/1612.05236
https://arxiv.org/abs/1703.09185

Locally Balanced Noise

Perturbations
® Add to zero (locally per node)

Algorithm

® Node | selects d{f such that };; d{;i = 0 and |d{(l| <A
m Share w)' = x)} + d”' with node |

m Weighted averaging and gradient descent

50



x [t+1]= %xl [¢]+ %x3 [t]- A, V£fi(x,[t])

1 1 1
x,[t+1]= gxl [1]+ gxz[t] + §x3[t] - A V£ (x,[1])



Network Balanced Noise

Perturbations
m Add to zero (over network)

Algorithm

® Node j computes perturbation d{(
- sends s to |

- add received s and subtract sent st = d{( = Y rcvd — Y sent

m Obfuscate state w{( = xL + d{( shared with neighbors
m Weighted averaging and gradient descent
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Function Sharing

B et fj(x) be bounded degree polynomials

Algorithm

® Node j shares s'(x) with node i
= Node j obfuscates using p;(x) = ¥s"(x) — ¥s"(x)

m Use fj(x) = fj(x) + pj(x) and use distributed gradient
descent
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Function Sharing

B Function Sharing iterates converge to correct
optimum (3f; (%) = f(x))

m Privacy: If vertex connectivity of graph > f+1 then no
group of f nodes can estimate function f; (or sum of
functions of any subset of functions)

54



Summary

m Several different approaches for privacy in
optimization/learning

® More work needed to develop practical schemes that
maintain accuracy and yet achieve strong privacy
guarantees
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Summary

m Tutorial provides only a limited overview of past work

m |Longer version of the tutorial available from

56


http://disc.georgetown.domains/talks.htm
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