Tutorial: Part V

Security and Privacy
in Distributed Optimization and Learning

Nitin Vaidya
Georgetown University

Privacy

Architectures

Distributed Optimization

B Server maintains estimate x;,

In each iteration

m Each agenti
® Receives x;, from server
® Uploads gradient V£;(x;)

®m Server updates estimate

v f1 ()
'

Xk
Server
VN
Vf3(xk)
N\

Xp+1 < X — Ay 2 Vfi(xi)

Server
N
Vi1(xk) Vfs(xk)
/ } N\

Server observes gradients =» privacy compromised

Server
7T
Vii(xk) Vis(xk)
/ } N\

Server observes gradients =» privacy compromised

Achieve privacy and yet collaboratively optimize

Decentralized Optimization

® Each agent maintains local estimate x

In each iteration

m Compute weighted average with neighbors’ estimates
® Apply own gradient to own estimate

® Local estimates converge to argmin E fi(x)
/‘ |

x [t+1]= %xl [¢]+ %x3 [t]- A, V£fi(x,[t])

1 1 1
x,[t+1]= gxl [1]+ gxz[t] + §x3[t] - A V£ (x,[1])

Peer-to-Peer Architecture

® Neighbors can potentially learn information about an
agent’s cost function

Approaches for Privacy

10

Approaches for Privacy

m Cryptographic methods
m Differential privacy

B Function transformation

11

Encryption

m Basic idea: Agents send
encrypted information to the
server (or peers)

m Server performs computation
on encrypted data

B Need practical/efficient
encryption mechanisms

Vi1(xk)
v

Xk
Server
7T
Vis(xx)
| N\

©

Differential Privacy

m Agents add Laplace distributed noise to the gradients

Xk

Server

/A

Vii(xk) + &

'é

13

https://dl.acm.org/doi/10.1145/2810103.2813687

Differential Privacy for Machine Learning

[]

m Agents add Laplace distributed noise to the gradients

Xk
Server
/ 7 Y
Vfi(xk) + &
v !

©

Goal: Make it difficult to determine if a particular
data item was used during training

https://dl.acm.org/doi/10.1145/2810103.2813687

Differential Privacy

Server

Vfi(xx) + Ek/ \

f1 f2 f3

Trade-off privacy with accuracy

15

Decentralized Optimization

® Each agent maintains local estimate x

In each iteration

m Compute weighted average with neighbors’ estimates
® Apply own gradient to own estimate

® Local estimates converge to argmin E fi(x)
/‘ |

x [t+1]= %xl [¢]+ %x3 [t]- A, V£fi(x,[t])

1 1 1
x,[t+1]= gxl [1]+ gxz[t] + §x3[t] - A V£ (x,[1])

Differential Privacy for
Peer-to-Peer Architecture

[,]

m Agents add noise to their estimate before sharing
with the neighbors

18

https://dl.acm.org/doi/10.1145/2684464.2684480
https://arxiv.org/abs/1401.2596

Other Work

B Several other papers on differential privacy for
optimization (such as ,

)

19

https://arxiv.org/pdf/1806.06035.pdf
https://arxiv.org/pdf/1903.07792.pdf

Federated Architecture
[]

B Server maintains estimate x;, N
k

Server

/]

)

https://arxiv.org/abs/1912.04977

Federated Architecture
[]

B Server maintains estimate x;,

Xk

In each iteration

Server

® Each agenti

® Receive x,, from server

7

https://arxiv.org/abs/1912.04977

Federated Architecture

B Server maintains estimate x;, N
k

Server

In each iteration ; \
/ }’3

® Each agenti
® Receive x,, from server ‘ ‘
® CompUte Vie = X — Akai(Xk)

® Send y, to server

Federated Architecture

B Server maintains estimate x;, N
k

Server

In each iteration 7 \
/ }’3

m Each agenti
® Receive x,, from server ‘ ‘
° CompUte Vie = X — }lkVﬁ(Xk)

® Send y, to server

B Server updates estimate

1
Xk+1 € Ez Vi

Federated Architecture

B Server maintains estimate x;, N
k

Server

In each iteration 7 \
/ }’3

® Each agenti
® Receive x,, from server ‘ ‘
° CompUte Vie = X — }lkVﬁ(Xk)

® Send y, to server

B Server updates estimate

1
Xk+1 € Ez Vi

Federated Architecture

B Server maintains estimate x;, N
k

Server

In each iteration - \
/ Y3

m Each agenti 3} \
® Receive x,, from server
® Compute v, = xx — A Vfi(xk)

® Send y, to server \

®m Server updates estimate

1
Xk+1 € Ez Vi

Replace single step

by multiple steps

Private Federated Learning

[]

B Agents cooperate to compute), y; while preserving
privacy of individual y; values

B Each pair of users communicates over secure channels
to agree on matched pair of “noise”

® User u sends noise s, to user v
® User u obfuscates on y, value as below, for “large enough” R

Z,= (Yu + ZVSV,U- zvSu,v) mod R

® Server can compute ¥, y, correctly as ¥, z, mod R without
being able to learn individual agent’s estimate

Further improvement described in []

https://arxiv.org/abs/1611.04482
https://arxiv.org/abs/1611.04482

Secure Sum

B Similar concept introduced in |
secure aggregation

] for

27

https://alo.mit.edu/wp-content/uploads/2015/06/Privacy-Preserving-Methods-for-Sharing-Financial-Risk-Exposures.pdf

Balanced Noise

m Exploit diversity ... Multiple servers / neighbors

B [ntroduce noise that is “cancellable”

[] also introduce balanced
noise, but it is ut|I|zed differently (also, no modulo operation
used in schemes to be presented next)

28

https://arxiv.org/abs/1611.04482
https://alo.mit.edu/wp-content/uploads/2015/06/Privacy-Preserving-Methods-for-Sharing-Financial-Risk-Exposures.pdf

Server-Based Architecture: Balanced Noise

[,]

Server 1 Server 2

pha=t

Privacy if subset of servers adversarial

29

https://arxiv.org/pdf/1608.03866.pdf
https://arxiv.org/abs/1608.05401

Balanced Noise

B Structured noise that

“cancels” over servers/neighbors

30

Intuition

x! x?

Server 1 Server 2

pha=

31

Intuition

x! x?

Server 1 Server 2

\ N>/

f11f12 f21f22 f31f32

Each client
simulates
multiple clients

32

Intuition

x! x?

Server 1 Server 2

\ N>/

fi1 fiz f21 /22 f31f32
fi1(x) + f12(x) = f1(x)

fij(x) not necessarily convex

Algorithm

B Each server maintains an estimate
In each iteration

m Client
® Download estimates from corresponding server
® Upload gradient of f;

B Each server updates estimate using received gradients

Algorithm

B Each server maintains an estimate
In each iteration

m Client
® Download estimates from corresponding server
® Upload gradient of f;

B Each server updates estimate using received gradients

m Servers periodically exchange estimates to perform a
consensus step

Claim

m Under suitable assumptions, servers eventually reach
consensus in

argmin Z fi(x)

l

36

Privacy

fi1t f21+f31 fi2+ fa2+f32

Server 1 Server 2

\\></

f11f12 f21f22 f31f32

37

Privacy

fi1t f21+f31 fi2+ fa2+f32

Server 1 Server 2

\\></

f11f12 f21f22 f31f32

m Server 1 may learn fi1, o1, fa1, fiz+ f22+[30
m Not sufficient to learn f;

38

fi1(x) + f12 (x) = f1 (x)

B function splitting not necessarily practical

m Structured randomization as an alternative

39

Structured Randomization

®m Multiplicative or additive noise in gradients

m Noise cancels over servers

40

Multiplicative Noise

x! X?

Server 1 Server 2

pha=t

41

Multiplicative Noise

x! X?

Server 1 Server 2

f1 f2 f3

42

Multiplicative Noise

x! x?
Server 1 Server 2
\ -
aVfi(x') \ BVAGD)
~
fi /> f3

a+p=1

43

Multiplicative Noise

x! x?
Server 1 Server 2
\ -
aVfi(x') \ Bh (x?)
~
fi /> f3

Suffices for this invariant to hold

a+p=1

over a larger number of iterations

Multiplicative Noise

it X?
Server 1 Server 2
\ -
aVfi(x') \ B (x?)
~
f1 f2 f3

Noise from client it r]
a+,[>’=1 O server |

not zero-mean

Claim

m Under suitable assumptions, servers eventually reach
consensus in

argmin Z fi(x)

l

46

Peer-to-Peer Architecture

[, 2017,

47

https://arxiv.org/abs/1612.05236
https://arxiv.org/abs/1703.09185
https://arxiv.org/abs/1905.00733
https://arxiv.org/abs/2004.01312

Balanced Noise

[, 2017]

m Each agent shares noisy estimate with neighbors

® Scheme 1 — Noise cancels over neighbors
® Scheme 2 — Noise cancels network-wide

P

https://arxiv.org/abs/1612.05236
https://arxiv.org/abs/1703.09185

Balanced Noise

[, 2017]

m Each agent shares noisy estimate with neighbors

® Scheme 1 — Noise cancels over neighbors
® Scheme 2 — Noise cancels network-wide

X+ g

>

& +& =0 (over iterations)

X+ &

https://arxiv.org/abs/1612.05236
https://arxiv.org/abs/1703.09185

Locally Balanced Noise

Perturbations
® Add to zero (locally per node)

Algorithm

® Node | selects d{f such that };; d{;i = 0 and |d{(l| <A
m Share w)' = x)} + d”' with node |

m Weighted averaging and gradient descent

50

x [t+1]= %xl [¢]+ %x3 [t]- A, V£fi(x,[t])

1 1 1
x,[t+1]= gxl [1]+ gxz[t] + §x3[t] - A V£ (x,[1])

Network Balanced Noise

Perturbations
m Add to zero (over network)

Algorithm

® Node j computes perturbation d{(
- sends s to |

- add received s and subtract sent st = d{(= Y rcvd — Y sent

m Obfuscate state w{(= xL + d{(shared with neighbors
m Weighted averaging and gradient descent

52

Function Sharing

B et fj(x) be bounded degree polynomials

Algorithm

® Node j shares s'(x) with node i
= Node j obfuscates using p;(x) = ¥s"(x) — ¥s"(x)

m Use fj(x) = fj(x) + pj(x) and use distributed gradient
descent

53

Function Sharing

B Function Sharing iterates converge to correct
optimum (3f; (%) = f(x))

m Privacy: If vertex connectivity of graph > f+1 then no
group of f nodes can estimate function f; (or sum of
functions of any subset of functions)

54

Summary

m Several different approaches for privacy in
optimization/learning

® More work needed to develop practical schemes that
maintain accuracy and yet achieve strong privacy
guarantees

55

Summary

m Tutorial provides only a limited overview of past work

m |Longer version of the tutorial available from

56

http://disc.georgetown.domains/talks.htm

Acknowledgements

B Some of our results presented in the tutorial resulted
from work supported in part by the National Science
Foundation and Army Research Laboratory. The
views and conclusions presented are those of the
authors and should not be interpreted as
representing the official policies, either expressed or
implied, of the Army Research Laboratory, National
Science Foundation or the U.S. Government.

57

Attribution for Images

Krishnavedala, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>,
via Wikimedia Commons

https://upload.wikimedia.org/wikipedia/commons/1/12/Paraboloid_of_Revolution.svg
https://commons.wikimedia.org/wiki/File:Paraboloid_of_Revolution.svg

Ennepetaler86, CC BY 3.0 <https://creativecommons.org/licenses/by/3.0>,
via Wikimedia Commons

https://upload.wikimedia.org/wikipedia/commons/f/f2/Svm_intro.svg
https://commons.wikimedia.org/wiki/File:Svm_intro.svg

Zufzzi, Public domain, via Wikimedia Commons

https://upload.wikimedia.org/wikipedia/commons/8/8b/Neural_network_bottleneck_achitecture.svg

https://commons.wikimedia.org/wiki/File:Neural_network_bottleneck_achitecture.svg

