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Distributed Optimization

g Server maintains estimate !"

In each iteration

g Each agent i
iReceives !" from server
iUploads gradient #$%(!")

g Server updates estimate
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Server observes gradients  è privacy compromised

Achieve privacy and yet collaboratively optimize



Decentralized Optimization

g Each agent maintains local estimate x
In each iteration
g Compute weighted average with neighbors’ estimates
g Apply own gradient to own estimate

g Local estimates converge to
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of user data for training models. While such machine learning applications can improve user experience, they
also threaten the user’s privacy [26]. Motivated by these examples in the context of distributed optimization,
we ask the following question:

Can agents collaboratively learn underlying model parameters
without leaking private information?

The paper presents two privacy-preserving algorithms for distributed optimization, which can be used
for improving privacy in distributed machine learning. Although our work is motivated by machine learn-
ing applications, the proposed solutions have applications wherever distributed optimization formulation is
adopted.

We consider a distributed optimization problem involving S agents, each of whom has access to a local
convex objective function fi(x). In the context of machine learning for classification, the local objective
function may be a loss function that measures the accuracy of classification on the training dataset using a
given choice of model parameters – here x denotes the vector of model parameters. As an example, in the
context of classification task, fi(x) may denote the logistic loss function for the data items stored at agent i
– the loss depends on the parameters of the classification hypothesis, and the goal is to identify parameters
that minimize the loss over all the agents (i.e., over data stored at all the agents). In Section 6.2, we will
elaborate on the application of our work to machine learning.

Problem 1. The set of S agents need to distributedly compute the optimum of the global objective function,
which consists of the sum of the local objective functions. That is,

Distributedly find x
⇤

2 argmin
x2X

SX

i=1

fi(x) (1)

where X is the set that contains all feasible values for parameter vector x.

The local objective function fi(x) at each agent i is assumed to be a convex function. Additional
assumptions regarding the objective functions and the communication network interconnecting the agents
are detailed later.

1.1 Contributions

In this paper we present three algorithms for privacy-preserving distributed optimization:
• Randomized State Sharing (RSS, Algorithm 1) :

– Our privacy-preserving algorithm uses randomization. However, unlike di↵erential privacy schemes, our
strategy preserves optimality by introducing correlation between the randomness added to local model
parameter estimates.

– We prove asymptotic convergence in a deterministic setting (every execution) and argue its privacy
using the privacy analysis developed for a special case.

• Function Sharing (FS, Algorithm 4):

– We show that Function Sharing strategy (Algorithm 4, presented in [1]) simulates a special case of RSS
algorithm. If the random perturbations added to local iterates in RSS algorithm are state dependent,
then the RSS algorithm imitates FS algorithm.

– The deterministic convergence is shown to easily follow from the convergence analysis for RSS Algorithm.

• Randomized State Sharing - Locally Balanced (RSS-LB, Algorithm 3):

– RSS-LB is a distributed learning algorithm that uses locally balanced randomization to perturb the
parameter estimates (perturbations add to zero at each node). Unlike RSS, agents do not share the
same perturbed estimate with neighbors. Neighbors receive dissimilar estimates from agent j.

– We show deterministic convergence of RSS-LB.
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Peer-to-Peer Architecture

g Neighbors can potentially learn information about an 
agent’s cost function
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Approaches for Privacy
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Approaches for Privacy

g Cryptographic methods

g Differential privacy

g Function transformation
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Encryption

g Basic idea: Agents send 
encrypted information to the 
server (or peers)

g Server performs computation 
on encrypted data

g Need practical/efficient 
encryption mechanisms
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Differential Privacy
[Shokri, Shmatikov 2015]

g Agents add Laplace distributed noise to the gradients
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Differential Privacy for Machine Learning
[Shokri, Shmatikov 2015]

g Agents add Laplace distributed noise to the gradients
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Goal: Make it difficult to determine if a particular
data item was used during training
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Differential Privacy
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Decentralized Optimization

g Each agent maintains local estimate x
In each iteration
g Compute weighted average with neighbors’ estimates
g Apply own gradient to own estimate

g Local estimates converge to
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of user data for training models. While such machine learning applications can improve user experience, they
also threaten the user’s privacy [26]. Motivated by these examples in the context of distributed optimization,
we ask the following question:

Can agents collaboratively learn underlying model parameters
without leaking private information?

The paper presents two privacy-preserving algorithms for distributed optimization, which can be used
for improving privacy in distributed machine learning. Although our work is motivated by machine learn-
ing applications, the proposed solutions have applications wherever distributed optimization formulation is
adopted.

We consider a distributed optimization problem involving S agents, each of whom has access to a local
convex objective function fi(x). In the context of machine learning for classification, the local objective
function may be a loss function that measures the accuracy of classification on the training dataset using a
given choice of model parameters – here x denotes the vector of model parameters. As an example, in the
context of classification task, fi(x) may denote the logistic loss function for the data items stored at agent i
– the loss depends on the parameters of the classification hypothesis, and the goal is to identify parameters
that minimize the loss over all the agents (i.e., over data stored at all the agents). In Section 6.2, we will
elaborate on the application of our work to machine learning.

Problem 1. The set of S agents need to distributedly compute the optimum of the global objective function,
which consists of the sum of the local objective functions. That is,

Distributedly find x
⇤

2 argmin
x2X

SX

i=1

fi(x) (1)

where X is the set that contains all feasible values for parameter vector x.

The local objective function fi(x) at each agent i is assumed to be a convex function. Additional
assumptions regarding the objective functions and the communication network interconnecting the agents
are detailed later.

1.1 Contributions

In this paper we present three algorithms for privacy-preserving distributed optimization:
• Randomized State Sharing (RSS, Algorithm 1) :

– Our privacy-preserving algorithm uses randomization. However, unlike di↵erential privacy schemes, our
strategy preserves optimality by introducing correlation between the randomness added to local model
parameter estimates.

– We prove asymptotic convergence in a deterministic setting (every execution) and argue its privacy
using the privacy analysis developed for a special case.

• Function Sharing (FS, Algorithm 4):

– We show that Function Sharing strategy (Algorithm 4, presented in [1]) simulates a special case of RSS
algorithm. If the random perturbations added to local iterates in RSS algorithm are state dependent,
then the RSS algorithm imitates FS algorithm.

– The deterministic convergence is shown to easily follow from the convergence analysis for RSS Algorithm.

• Randomized State Sharing - Locally Balanced (RSS-LB, Algorithm 3):

– RSS-LB is a distributed learning algorithm that uses locally balanced randomization to perturb the
parameter estimates (perturbations add to zero at each node). Unlike RSS, agents do not share the
same perturbed estimate with neighbors. Neighbors receive dissimilar estimates from agent j.

– We show deterministic convergence of RSS-LB.
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Differential Privacy for
Peer-to-Peer Architecture

[Huang, Mitra, Vaidya 2015 , 2014]

g Agents add noise to their estimate before sharing 
with the neighbors
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https://dl.acm.org/doi/10.1145/2684464.2684480
https://arxiv.org/abs/1401.2596


Other Work

g Several other papers on differential privacy for 
optimization (such as Dobbe et al. 2020, 
Showkatbakhsh et al. 2015)
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https://arxiv.org/pdf/1806.06035.pdf
https://arxiv.org/pdf/1903.07792.pdf


Federated Architecture
[Kairouz et al 2018]

g Server maintains estimate !" !"
Server

https://arxiv.org/abs/1912.04977


g Server maintains estimate !"

In each iteration

g Each agent i
iReceive !" from server
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Federated Architecture
[Kairouz et al 2018]
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In each iteration
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g Server maintains estimate !"

In each iteration

g Each agent i
iReceive !" from server
iCompute #" = !" − &"∇()(!")
iSend #" to server

g Server updates estimate
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g Server maintains estimate !"

In each iteration

g Each agent i
iReceive !" from server
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g Server maintains estimate !"

In each iteration

g Each agent i
iReceive !" from server
iCompute #" = !" − &"∇()(!")
iSend #" to server

g Server updates estimate
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Private Federated Learning
[Bonawitz et al. 2016]

g Agents cooperate to compute ∑"# while preserving 
privacy of individual "# values

g Each pair of users communicates over secure channels 
to agree on matched pair of “noise”
iUser u sends noise su,v to user v
iUser u obfuscates on yu value as below, for “large enough” R

zu = ( yu + ∑v sv,u - ∑v su,v )  mod R

iServer can compute ∑u yu correctly as ∑u zu mod R without 
being able to learn individual agent’s estimate

Further improvement described in [Bonawitz et al. 2016]

https://arxiv.org/abs/1611.04482
https://arxiv.org/abs/1611.04482


Secure Sum

g Similar concept introduced in [Abbe et al. 2012] for 
secure aggregation
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https://alo.mit.edu/wp-content/uploads/2015/06/Privacy-Preserving-Methods-for-Sharing-Financial-Risk-Exposures.pdf


Balanced Noise
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g Exploit diversity …  Multiple servers / neighbors

g Introduce noise that is “cancellable”

[Bonawitz et al. 2016, Abbe 2012] also introduce balanced 
noise, but it is utilized differently (also, no modulo operation 
used in schemes to be presented next)

https://arxiv.org/abs/1611.04482
https://alo.mit.edu/wp-content/uploads/2015/06/Privacy-Preserving-Methods-for-Sharing-Financial-Risk-Exposures.pdf


Server-Based Architecture: Balanced Noise
[Gade,Vaidya 2016, 2016a]
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Balanced Noise

g Structured noise that

“cancels” over servers/neighbors
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Intuition
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Intuition
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Intuition
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Algorithm

g Each server maintains an estimate

In each iteration

g Client i
iDownload estimates from corresponding server
iUpload gradient of !"

g Each server updates estimate using received gradients



Algorithm

g Each server maintains an estimate

In each iteration

g Client i
iDownload estimates from corresponding server
iUpload gradient of !"

g Each server updates estimate using received gradients

g Servers periodically exchange estimates to perform a 
consensus step



Claim

g Under suitable assumptions, servers eventually reach 
consensus in

36

of user data for training models. While such machine learning applications can improve user experience, they
also threaten the user’s privacy [26]. Motivated by these examples in the context of distributed optimization,
we ask the following question:

Can agents collaboratively learn underlying model parameters
without leaking private information?

The paper presents two privacy-preserving algorithms for distributed optimization, which can be used
for improving privacy in distributed machine learning. Although our work is motivated by machine learn-
ing applications, the proposed solutions have applications wherever distributed optimization formulation is
adopted.

We consider a distributed optimization problem involving S agents, each of whom has access to a local
convex objective function fi(x). In the context of machine learning for classification, the local objective
function may be a loss function that measures the accuracy of classification on the training dataset using a
given choice of model parameters – here x denotes the vector of model parameters. As an example, in the
context of classification task, fi(x) may denote the logistic loss function for the data items stored at agent i
– the loss depends on the parameters of the classification hypothesis, and the goal is to identify parameters
that minimize the loss over all the agents (i.e., over data stored at all the agents). In Section 6.2, we will
elaborate on the application of our work to machine learning.

Problem 1. The set of S agents need to distributedly compute the optimum of the global objective function,
which consists of the sum of the local objective functions. That is,

Distributedly find x
⇤

2 argmin
x2X

SX

i=1

fi(x) (1)

where X is the set that contains all feasible values for parameter vector x.

The local objective function fi(x) at each agent i is assumed to be a convex function. Additional
assumptions regarding the objective functions and the communication network interconnecting the agents
are detailed later.

1.1 Contributions

In this paper we present three algorithms for privacy-preserving distributed optimization:
• Randomized State Sharing (RSS, Algorithm 1) :

– Our privacy-preserving algorithm uses randomization. However, unlike di↵erential privacy schemes, our
strategy preserves optimality by introducing correlation between the randomness added to local model
parameter estimates.

– We prove asymptotic convergence in a deterministic setting (every execution) and argue its privacy
using the privacy analysis developed for a special case.

• Function Sharing (FS, Algorithm 4):

– We show that Function Sharing strategy (Algorithm 4, presented in [1]) simulates a special case of RSS
algorithm. If the random perturbations added to local iterates in RSS algorithm are state dependent,
then the RSS algorithm imitates FS algorithm.

– The deterministic convergence is shown to easily follow from the convergence analysis for RSS Algorithm.

• Randomized State Sharing - Locally Balanced (RSS-LB, Algorithm 3):

– RSS-LB is a distributed learning algorithm that uses locally balanced randomization to perturb the
parameter estimates (perturbations add to zero at each node). Unlike RSS, agents do not share the
same perturbed estimate with neighbors. Neighbors receive dissimilar estimates from agent j.

– We show deterministic convergence of RSS-LB.
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Privacy

g Server 1 may learn !"", !$", !%", !"$+ !$$+!%$
g Not sufficient to learn !&
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g Function splitting not necessarily practical

g Structured randomization as an alternative
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Structured Randomization

g Multiplicative or additive noise in gradients

g Noise cancels over servers
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Multiplicative Noise
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Multiplicative Noise
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Multiplicative Noise
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Multiplicative Noise
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over a larger number of iterations



Multiplicative Noise
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Claim

g Under suitable assumptions, servers eventually reach 
consensus in
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of user data for training models. While such machine learning applications can improve user experience, they
also threaten the user’s privacy [26]. Motivated by these examples in the context of distributed optimization,
we ask the following question:

Can agents collaboratively learn underlying model parameters
without leaking private information?

The paper presents two privacy-preserving algorithms for distributed optimization, which can be used
for improving privacy in distributed machine learning. Although our work is motivated by machine learn-
ing applications, the proposed solutions have applications wherever distributed optimization formulation is
adopted.

We consider a distributed optimization problem involving S agents, each of whom has access to a local
convex objective function fi(x). In the context of machine learning for classification, the local objective
function may be a loss function that measures the accuracy of classification on the training dataset using a
given choice of model parameters – here x denotes the vector of model parameters. As an example, in the
context of classification task, fi(x) may denote the logistic loss function for the data items stored at agent i
– the loss depends on the parameters of the classification hypothesis, and the goal is to identify parameters
that minimize the loss over all the agents (i.e., over data stored at all the agents). In Section 6.2, we will
elaborate on the application of our work to machine learning.

Problem 1. The set of S agents need to distributedly compute the optimum of the global objective function,
which consists of the sum of the local objective functions. That is,

Distributedly find x
⇤

2 argmin
x2X

SX

i=1

fi(x) (1)

where X is the set that contains all feasible values for parameter vector x.

The local objective function fi(x) at each agent i is assumed to be a convex function. Additional
assumptions regarding the objective functions and the communication network interconnecting the agents
are detailed later.

1.1 Contributions

In this paper we present three algorithms for privacy-preserving distributed optimization:
• Randomized State Sharing (RSS, Algorithm 1) :

– Our privacy-preserving algorithm uses randomization. However, unlike di↵erential privacy schemes, our
strategy preserves optimality by introducing correlation between the randomness added to local model
parameter estimates.

– We prove asymptotic convergence in a deterministic setting (every execution) and argue its privacy
using the privacy analysis developed for a special case.

• Function Sharing (FS, Algorithm 4):

– We show that Function Sharing strategy (Algorithm 4, presented in [1]) simulates a special case of RSS
algorithm. If the random perturbations added to local iterates in RSS algorithm are state dependent,
then the RSS algorithm imitates FS algorithm.

– The deterministic convergence is shown to easily follow from the convergence analysis for RSS Algorithm.

• Randomized State Sharing - Locally Balanced (RSS-LB, Algorithm 3):

– RSS-LB is a distributed learning algorithm that uses locally balanced randomization to perturb the
parameter estimates (perturbations add to zero at each node). Unlike RSS, agents do not share the
same perturbed estimate with neighbors. Neighbors receive dissimilar estimates from agent j.

– We show deterministic convergence of RSS-LB.
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Peer-to-Peer Architecture
[Gade, Vaidya 2016, 2017,

Gupta,Chopra 2019, Gupta et al. 2020]
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Balanced Noise
[Gade, Vaidya 2016, 2017]

g Each agent shares noisy estimate with neighbors

• Scheme 1 – Noise cancels over neighbors
• Scheme 2 – Noise cancels network-wide
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Balanced Noise
[Gade, Vaidya 2016, 2017]

g Each agent shares noisy estimate with neighbors

• Scheme 1 – Noise cancels over neighbors
• Scheme 2 – Noise cancels network-wide

!"

!#
!$

!%

!&

x + ε1

x + ε2

ε1 + ε2 = 0      (over iterations)

https://arxiv.org/abs/1612.05236
https://arxiv.org/abs/1703.09185
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Locally Balanced Noise

Perturbations 
g Add to zero (locally per node)

Algorithm
g Node j selects d"

#,% such that ∑% d"
#,% = 0 and )*+,, ≤ Δ

g Share w"
#,% = x"

# + d"
#,% with node I

g Weighted averaging and gradient descent
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Network Balanced Noise

Perturbations 
g Add to zero (over network)

Algorithm
g Node j computes perturbation d"

#

- sends s#,& to i
- add received s&,# and subtract sent s#,& ⇒ d"

# = ∑ rcvd − ∑ sent

g Obfuscate state w"
# = x"

# + d"
# shared with neighbors

g Weighted averaging and gradient descent 



Function Sharing

g Let f"(x) be bounded degree polynomials 

Algorithm

g Node j shares s'," x with node i
g Node j obfuscates using p' x = ∑s",' x − ∑s',"(x)
g Use -f' x = f' x + p'(x) and use distributed gradient 

descent
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Function Sharing

g Function Sharing iterates converge to correct 
optimum (∑"f$ x = f(x)) 

g Privacy: If vertex connectivity of graph ≥ f+1 then no 
group of f nodes can estimate function *+ (or sum of 
functions of any subset of functions)
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Summary

g Several different approaches for privacy in 
optimization/learning

g More work needed to develop practical schemes that 
maintain accuracy and yet achieve strong privacy 
guarantees
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Summary

g Tutorial provides only a limited overview of past work

g Longer version of the tutorial available from 
http://disc.georgetown.domains/talks.htm
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