
Tutorial: Part 2

Security and Privacy
in Distributed Optimization and Learning

Nitin Vaidya
Georgetown University

March 2021

Slides & Videos

g Slides and videos for the tutorial posted at

https://disc.georgetown.domains

Visit the tab for Talks at the above page

2

Outline

argmin ∑ "# $

3

2
4

5

1

1 2 3

Server

Gradient Method

! " = $!% "

"&'(⟵ "& − +&∇ $
%
!% "&

x2
x3

x0

x1

Gradient Method

! " = $!% "

"&'(⟵ "& − +&∇ $
%
!% "&

x2
x3

x0

x1

"&'(⟵ "& − +&$
%
-!% "&

Gradient Method

! " = $!% "

"&'(⟵ "& − +&∇ $
%
!% "&

x2
x3

x0

x1

"&'(⟵ "& − +&$
%
-!% "&

Distributed Optimization

g Each agent ! knows own cost function "# $

g Need to cooperate to minimize ∑"# $

è Distributed algorithms

7

Gradient Method

! " = $!% "

x2
x3

x0

x1

"&'(⟵ "& − +&$
%
,!% "&

Uniform weights
for fi’s

Gradient Method

x2
x3

x0

x1

!"#$ ⟵ !" − '"(
)
*)+,) !"

Non-uniform weights
for fi’s

Gradient Method

! " = $%&!& "

x2
x3

x0

x1

"'() ⟵ "' − ,'$
&
%&-!& "'

Non-uniform weights
for fi’s

Gradient Method

! " = $%&!& "

x2
x3

x0

x1

"'() ⟵ "' − ,'$
&
%&-!& "'

Uniform weights
important

Architectures

3

2
4

5

1

1 2 3

Server

Architectures

1 2 3

Server

Jargon

I tend to refer to to all the variants as “distributed”,
but the literature uses three terminologies

g Decentralized … Peer-to-peer

g Distributed … Server-based (clients supply gradients)

g Federated … Server-based (clients supply estimates)

… all are distributed algorithms

Federated Architecture
[Kairouz et al 2018]

g Server maintains estimate !" !"
Server

https://arxiv.org/abs/1912.04977

g Server maintains estimate !"

In each iteration

g Each agent i
iReceive !" from server

Server

Federated Architecture
[Kairouz et al 2018]

!"

https://arxiv.org/abs/1912.04977

g Server maintains estimate !"

In each iteration

g Each agent i
iReceive !" from server
iCompute #" = !" − &"∇()(!")
iSend #" to server

Server

Federated Architecture

!"

#, #-

g Server maintains estimate !"

In each iteration

g Each agent i
iReceive !" from server
iCompute #" = !" − &"∇()(!")
iSend #" to server

g Server updates estimate

!",- ⟵
1
01#)

Server

Federated Architecture

!"

#- #2

g Server maintains estimate !"

In each iteration

g Each agent i
iReceive !" from server
iCompute #" = !" − &"∇()(!")
iSend #" to server

g Server updates estimate

!",- ⟵
1
01#)

Server

Federated Architecture

!"

#- #2

g Server maintains estimate !"

In each iteration

g Each agent i
iReceive !" from server
iCompute #" = !" − &"∇()(!")
iSend #" to server

g Server updates estimate

!",- ⟵
1
01#)

Server

Federated Architecture

!"

#- #2

Replace single step
by multiple steps

g Server maintains estimate !"

In each iteration

g Each agent i in a size-s subset
iReceive !" from server
iCompute #" = !" − &"∇()(!")
iSend #" to server

g Server updates estimate

!",- ⟵
1
01#)

Server

Federated Architecture:
Stochastic Version

!"

#- #2

Recall

! " = $%&!& "

x2
x3

x0

x1

"'() ⟵ "' − ,'$
&
%&-!& "'

Uniform weights
important

g To ensure correct “weights”,
agents must be sampled uniformly

23

Federated Architecture:
Stochastic Version

Distributed Optimization

g Server maintains estimate !"
Server
!"

Distributed Optimization

g Server maintains estimate !"

In each iteration

g Each agent i
iReceives !" from server

Server

!"

!"

!"

Distributed Optimization

g Server maintains estimate !"

In each iteration

g Each agent i
iReceives !" from server
iUploads gradient #$%(!")

Server

#$((!")

!"

#$)(!")

Distributed Optimization

g Server maintains estimate !"

In each iteration

g Each agent i
iReceives !" from server
iUploads gradient #$%(!")

g Server updates estimate

!"() ⟵ !" − ," -#$% !"

Server

#$)(!")

!"

#$.(!")

g Server maintains estimate !"

In each iteration

g Each agent i in a subset
iReceives !" from server
iUploads gradient #$%(!")

g Server updates estimate

!"() ⟵ !" − ," -#$% !"

Server

#$)(!")

!"

#$.(!")

Distributed Optimization:
Stochastic Version

Stochastic Distributed Machine Learning
[Bottou,Curtis,Nocedal 2016]

Two dimensions of randomization

g Select a subset of agents
randomly in each round

Server

https://arxiv.org/abs/1606.04838

Stochastic Distributed Machine Learning

Two dimensions of randomization

g Select a subset of agents
randomly in each round

g Each agent may compute gradient
over a subset of data available
to that agent

Server

Recall

! " = $%&!& "

x2
x3

x0

x1

"'() ⟵ "' − ,'$
&
%&-!& "'

Uniform weights
important

Stochastic Distributed Machine Learning
Heterogeneous Case (“non-I.I.D.”)

g Each agent has access to a subset of the dataset

è !" # ≠ !% #

è Each agent draws gradients from a different distribution

g Need to be careful to ensure equal “weights” for agents
g Availability of multiple agents provides parallelism

Stochastic Distributed Machine Learning
Homogeneous Case (“I.I.D.”)

g Each agent has access to the same dataset

è !" # = !$ #

è Each agent draws gradients with the same distribution

g Availability of multiple agents provides parallelism

!

g Optimization Methods for Large-Scale Machine Learning
Léon Bottou, Frank E. Curtis, Jorge Nocedal
2018

34

https://arxiv.org/abs/1606.04838
https://arxiv.org/abs/1606.04838

Other Variations

… asynchronous
… gradient compression
… shared memory

Server

Disadvantage of Synchronous Computation

g The server cannot update estimate until ALL clients
have responded

g Slowest client dictates speed … stragglers are bad

è Asynchronous computation to the rescue

36

Recall … Synchronous Algorithm

g Server maintains estimate !"

In each iteration

g Each agent i
iReceives !" from server
iUploads gradient #$%(!")

g Server updates estimate

!"() ⟵ !" − ," -#$% !"

Server

#$)(!")

!"

#$.(!")

Asynchrony

Different research communities use the term somewhat
differently

g Distributed algorithms (ACM PODC, for instance):
Delays are finite, but unbounded

g Decentralized control (e.g., CDC) and machine learning
(e.g., NeurIPS):

• Bounded delays, or
• Strong assumptions on delay distribution

Optimization literature typically uses
the latter interpretation

Asynchronous Algorithm

g No need to wait for all gradients

g Example … update server’s estimate after receiving
gradient from any client

39

Asynchronous Algorithm

g Server maintains estimate !

g Agent i
iReceive current ! from server
iUploads gradient "#$(!)

Server
!

Asynchronous Algorithm

g Server maintains estimate !

g Agent i
iReceive current ! from server
iUploads gradient "#$(!)

g Server updates estimate on receiving gradient
"#'(.) from any client)

! ⟵ ! − ,-,' . (? ?)

Server
!

Recall

! " = $%&!& "

x2
x3

x0

x1

"'() ⟵ "' − ,'$
&
%&-!& "'

Uniform weights
important

Asynchronous Algorithm

g Different agents may experience different delays

Asynchronous Algorithm

g Different agents may experience different delays

g Need to ensure equal “weights”

iAdjust step size proportionally with time between updates
from a given agent

!"#$ ⟵ !"−'",) *+)(?)

Asynchronous Algorithm

g Different agents may experience different delays

g Need to ensure equal “weights”

iAdjust step size proportionally with time between updates
from a given agent

!"#$ ⟵ !"−'",) *+)(?)

iUse “stale” gradients from agents, if needed (use all agents
in each iteration)

!"#$ ⟵ !" − '" ∑*+0 ?

Asynchronous Message Passing

g Much of the work implicitly assumes message
passing

g Agents receives a “consistent” view of the entire state
vector !" from the server

and their updates are applied “atomically”

!"#$⟵ !" − '" ∑)*+ ?

g Behavior may be different in shared memory 46

Asynchronous Shared Memory
[Alistarh et al. 2018]

g Agents read elements of ! independently
… not an “atomic read”

g Updates of ! are also not atomic

g Agents have an inconsistent view of the state of !

Shared Memory

Read(![#]) Write(![#])

https://arxiv.org/abs/1803.08841

Asynchronous Shared Memory
[Alistarh et al. 2018]

g Agents read elements of ! independently
… not an “atomic read”

g Updates of ! are also not atomic

g Agents have an inconsistent view of the state of !

1
0
2

Initial !

3
0
5

Agent 1’s update
applied partially so far

! − # $%&(.)

Initial !
read by agent 1

https://arxiv.org/abs/1803.08841

Asynchronous Shared Memory
[Alistarh et al. 2018]

g Agents read elements of ! independently
… not an “atomic read”

g Updates of ! are also not atomic

g Agents have an inconsistent view of the state of !

1
0
2

Initial !

3
0
5

Agent 1’s update
applied partially so far

! − # $%&(.)
Agent 2 reads

this “inconsistent” vector as !
and computes gradient

Initial !
read by agent 1

https://arxiv.org/abs/1803.08841

Gradient Compression

g Length of gradient vector equals length of vector !

g Can be very large … for instance, ! may represent
parameters of a deep neural network

g Compression … reduce communication cost

iOnly send elements of gradient vector that have changed
“significantly” since last transmission of gradient

iOnly send top-K largest elements of the gradient vector

50

Architectures

3

2
4

5

1

1 2 3

Server

Architectures

3

2
4

5

1 Multi-Agent

Peer-to-Peer (p2p)

Decentralized

Many Variations
[Tsitsiklis 1984]

g Version not considered in this tutorial

iEach agent knows identical cost function ! "
iAgents cooperate to determine argmin ! "
iAgent # responsible to determine #-th element of argmin ! "

53

3

2
4

5

1

") "*

"+

https://dspace.mit.edu/handle/1721.1/15254

Many Variations
[Tsitsiklis 1984]

g Version not considered in this tutorial

iEach agent knows identical cost function ! "
iAgents cooperate to determine argmin ! "
iAgent # responsible to determine #-th element of argmin ! "

g Version considered in this tutorial

iAgent # knows identical cost function !$ "
iAgents cooperate to determine argmin ∑!$ "
iEach agent learns argmin ∑!$ "

54

https://dspace.mit.edu/handle/1721.1/15254

Many Variations

g Synchronous or Asynchronous

g Lossy or reliable links

We will consider the synchronous setting
and error-free links

55

A Detour … Average Consensus

Average Consensus

g Each node has an input (scalar or vector)

g Average consensus: Output = average of inputs

57

Average Consensus

58

X

Average Consensus

59

c

b

a
a = 3a/4+ c/4

b = 3b/4+ c/4

c = a/4+b/4+c/2

a = (18/4+1/4) = 19/4

b = (6/4+1/4)=7/4

c = (2/4+6/4+1/2) = 10/4

1

2

6

Average Consensus

a = (18/4+1/4) = 19/4

b = (6/4+1/4)=7/4

c = (2/4+6/4+1/2) = 10/4

1

2

6

Average Consensus

As time à ∞, values converge to average of inputs

62

a = 3a/4+ c/4

b = 3b/4+ c/4

c

b

a

3 / 4 0 1/ 4
0 3 / 4 1 / 4
1 / 4 1 / 4 1 / 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= = M
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

M

c = a/4+b/4+c/2

001

iteration index

63

a = 3a/4+ c/4

b = 3b/4+ c/4

c

b

a

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= M M
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

after 2 iterations

c = a/4+b/4+c/2

= M2
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

after 1 iteration

002

64

a = 3a/4+ c/4

b = 3b/4+ c/4

c

b

a

c = a/4+b/4+c/2

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= Mk
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

after k iterations

0k

65

a = 3a/4+ c/4

b = 3b/4+ c/4

c

b

a

c = a/4+b/4+c/2

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= Mk
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

after k iterations

0k
è x[k] = Mk x [0]

Iteration index

x[k] x[0]

Connected Undirected Graphs

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

:= Mk
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

after k iterations
g Average consensus

if M doubly stochastic

• Matrix elements in [0,1]

• Mij non-zero if link (i,j) exists

• Each row & each column adds to 1

3 / 4 0 1/ 4
0 3 / 4 1 / 4
1 / 4 1 / 4 1 / 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

:= = M
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

M

Due to stochastic rows,
each new state
in convex hull
of old states

Due to stochastic columns,
total “mass”

(sum of states)
is preserved

68

a = 3a/4+ c/4

b = 3b/4+ c/4

c

b

a

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

:= Mk
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1/ 3 1 / 3 1 / 3
1 / 3 1 / 3 1 / 3
1 / 3 1 / 3 1 / 3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟è

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

c = a/4+b/4+c/2

Doubly
stochastic M

! → ∞

Average Consensus

69

X

Optimization

70

X

argmin ∑ "# $

Distributed Optimization

Iterative algorithm

g Each agent maintains an estimate

g Local estimates shared with neighbors & updated in
each iteration

g Estimates converge to optimum

71

! " = $!% "

Example based on [Nedic and Ozdaglar, 2009]

x1

x3

x2

x3 x3

http://www.ifp.illinois.edu/~angelia/distributed_journal_final.pdf

x1

x3

x2

x3 x3

!"[$]
Change of notation

Iteration indexagent identifier

x1

x3

x2

x3 x3

x1 [t +1]=
2
3
x1 [t]+

1
3
x3[t]−λt ∇h1 (x1 [t])!"

x1

x3

x2

x3 x3

x3[t +1]=
1
3
x1 [t]+

1
3
x2[t]+

1
3
x3[t]−λt ∇h3 (x3[t])!"

x1 [t +1]=
2
3
x1 [t]+

1
3
x3[t]−λt ∇h1 (x1 [t])!#

Decentralized Optimization

In the limit as t à ∞

g Consensus: All agents converge to same estimate

g Optimality: Estimates converge to identical point in
argminx ∑" #" $

76

Why does this work?

x1

x3

x2

x3 x3

!"[$ + 1] ⟵
2
3!"[$] +

1
3 !+[$] − - ./" !"[$]

!+[$ + 1] ⟵
1
3!"[$] +

1
3 !0[$] +

1
3 !+[$] − - ./+ !+[$]

![# + 1] ⟵ (![#] − *+ ,- ![#]

!.[#]
!.[#]
!.[#]

-/ !/[#]
-0 !0[#]
-. !.[#]

!"[$ + 1] ⟵
2
3!"[$] +

1
3 !+[$] − -. /0" !"[$]

!+[$ + 1] ⟵
1
3!"[$] +

1
3 !1[$] +

1
3 !+[$] − -./0+ !+[$]

![$ + 1] ⟵ 2 ![$] − -. /0 ![$]
Doubly
stochastic

M

![# + 1] ⟵ (![#] − *+ ,- ![#]
Doubly
stochastic

M

M here is also doubly stochastic,
but different from

the average consensus example

M identical to that in the
average consensus example

will also suffice

82

![# + 1] ⟵ (![#] − *+ ,- ![#]

![# + 1] ⟵ (![#] − *+ ,- ![#]

![1] ⟵ (![0] − */ ,- ![0]

84

![# + 1] ⟵ (![#] − *+ ,- ![#]

![1] ⟵ (![0] − */ ,- ![0]

![2] ⟵ (![1] − *1 ,- ![1]

85

![# + 1] ⟵ (![#] − *+ ,- ![#]

![1] ⟵ (![0] − */ ,- ![0]

![2] ⟵ (![1] − *1 ,- ![1]
= (3 ! 0 − */(,- ! 0 − *1 ,- ![1]

86

![# + 1] ⟵ (![#] − *+ ,- ![#]

![1] ⟵ (![0] − */ ,- ![0]

![2] ⟵ (![1] − *1 ,- ![1]
= (3 ! 0 − */(,- ! 0 − *1 ,- ![1]

![3] ⟵ (![2] − *3 ,- ![2]

![# + 1] ⟵ (![#] − *+ ,- ![#]

![1] ⟵ (![0] − */ ,- ![0]

![2] ⟵ (![1] − *1 ,- ![1]
= (3 ! 0 − */(,- ! 0 − *1 ,- ![1]

![3] ⟵ (![2] − *3 ,- ![2]
= (5 ! 0

− */(3,- ! 0 − *1(,- ! 1 − *3 ,- ![2]

![# + 1] ⟵ (![#] − *+ ,- ![#]

![1] ⟵ (![0] − */ ,- ![0]

![2] ⟵ (![1] − *1 ,- ![1]
= (3 ! 0 − */(,- ! 0 − *1 ,- ![1]

![3] ⟵ (![2] − *3 ,- ![2]
= (5 ! 0

− */(3,- ! 0 − *1(,- ! 1 − *3 ,- ![2]

*6 decreasing with time

Claims

g Estimates at different nodes converge è Consensus

g The estimates converges to

89

argmin ∑ "# $

Part 3

g Byzantine Fault-Tolerant (Secure)
Optimization & Learning

Another Detour …

Background

92

Net-X:
Multi-

Channel
Mesh

Theory to
Practice

Multi-channel
protocol

Channel Abstraction Module

IP Stack

Interface
Device Driver

User
Applications

ARP

Interface
Device Driver

OS improvements
Software architecture

Capacity
bounds

channels

ca
pa

cit
y

Net-X
testbed

CSL

A

B

C

D

E F

Fixed

Switchable

Insights on
protocol design

Linux box

How do you get from

wireless systems to distributed optimization/learning?

94

Byzantine
consensus

Wireless
networks

Average
consensus

+ lossy links

95

Byzantine
consensus

Average
consensus

+ lossy links

Average
consensus +

Byzantine faults

Wireless
networks

96

Byzantine
consensus

Average
consensus

+ lossy links

Average
consensus +

Byzantine faults

Optimization +
Byzantine faults

Wireless
networks

97

Byzantine
consensus

Wireless
networks

Average
consensus

+ lossy links

Average
consensus +

Byzantine faults

Learning +
Byzantine faults

Optimization +
Byzantine faults

98

Byzantine
consensus

Wireless
networks

Average
consensus

+ lossy links

Average
consensus +

Byzantine faults

Learning +
Byzantine faults

Optimization +
Byzantine faults

Optimizatio/
/ Learning
+ Privacy

1980: Pease, Shostak, Lamport
Byzantine consensus

1986: Dolev et al.
Approximate

Byzantine consensus

Tsitsiklis 1984

Hajnal 1958
Weak ergodicity
of
nonhomogeneous
Markov chains

Jadbabaei, Lin, Morse 2003
Flocking problem

1983: Fischer, Lynch, Paterson
Asynchronous consensus

impossibility result

DeGroot 1974
Reaching a consensus

Decentralized
Control

Distributed
Computing

Nedich, Ozdaglar 2009

Continue to part 3

Byzantine Fault-Tolerant (Secure)
Optimization & Learning

101

Additional Slides

Connected Undirected Graphs

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

:= Mk
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

after k iterations
g Consensus if M row stochastic

• Matrix elements in [0,1]

• Mij non-zero if link (i,j) exists

• Each row adds to 1

104

a = 3a/4+ c/4

b = 3b/4+ c/4

c

b

a

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

:= Mk
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1/ 3 1 / 3 1 / 3
1 / 3 1 / 3 1 / 3
1 / 3 1 / 3 1 / 3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

è
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

c = a/4+b/4+c/2

Row
stochastic M

p q r
p q r
p q r

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

:= M
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Row
stochastic M

Due to stochastic rows,
each new state
in convex hull
of old states

Decentralized Optimization over Lossy Links

107

a = 3a/4+ c/4

b = 3b/4+ c/4

c

b

a

3 / 4 0 1/ 4
0 3 / 4 1 / 4
1 / 4 1 / 4 1 / 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

:= = M
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

M

c = a/4+b/4+c/2

108

a = 3a/4+ c/4

b = 3b/4+ c/4

c

b

a

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

:= Mk
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1/ 3 1 / 3 1 / 3
1 / 3 1 / 3 1 / 3
1 / 3 1 / 3 1 / 3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

è
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

c = a/4+b/4+c/2

Doubly
stochastic M

g Each node “transfers mass” to neighbors via messages

g Next state = Total received mass

109

c

b

a

c/2

c/4

c = a/4+b/4+c/2
a = 3a/4+ c/4

b = 3b/4+ c/4

c/4

Mass Transfer + Accumulation
An Alternate View

g Each node “transfers mass” to neighbors via messages

g Next state = Total received mass

110

c

b

a

c/2

c/4

c/4
a/4

b/4

c = a/4+b/4+c/2

3b/4

3a/4 a = 3a/4+ c/4

b = 3b/4+ c/4

Mass Transfer + Accumulation
An Alternate View

Conservation of Mass

g a+b+c constant after each iteration

111

c

b

a

c/2

c/4

c/4
a/4

b/4

c = a/4+b/4+c/2

3b/4

3a/4 a = 3a/4+ c/4

b = 3b/4+ c/4

Wireless Transmissions Unreliable

112

a = 3a/4+ c/4

b = 3b/4+ c/4

c = a/4+b/4+c/2
c

b

a

c/4

X
X

Impact of Unreliability

113

a = 3a/4+ c/4

b = 3b/4+ c/4

c = a/4+b/4+c/2
c

b

a

c/4

X

3 / 4 0 1/ 4
0 3 / 4 0
1 / 4 1 / 4 1 / 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=

X

Conservation of Mass

114

a = 3a/4+ c/4

b = 3b/4+ c/4

c = a/4+b/4+c/2
c

b

a

c/4

X

3 / 4 0 1/ 4
0 3 / 4 0
1 / 4 1 / 4 1 / 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=

X

X

Average consensus over lossy links ?

115

Potential Solution?

Assume that

transmitter KNOWS

when a message is not delivered

116

Potential Solution?

When mass not transferred to neighbor,

keep it to yourself

117

Convergence … if nodes intermittently connected

118

a = 3a/4+ c/4

b = 3b/4+ c/4

c = a/4+b/4+c/2+c/4
c

b

a

c/4

X

3 / 4 0 1/ 4
0 3 / 4 0
1 / 4 1 / 4 3 / 4

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=

X

c/4

119

Loss Model

Assume that

transmitter KNOWS

when a message is not delivered

120

X

Better Model ?

No common knowledge regarding message delivery

121

Solution

g Introduce memory

122

Solution Sketch

g S = mass C wanted to
transfer to node A
in total so far

g R = mass A has
received from
node C
in total so far

123

C

A

S R

S

R

Solution Sketch

g Node C transmits quantity S
…. message may be lost

g When it is received,
node A accumulates (S-R)

124

C

A

S R

S-R

S
R

What Does That Do ?

125

What Does That Do ?

g Implements virtual buffers

126
a

b

e

d

f

g

c

Dynamic Topology

g When CàB transmission unreliable,
mass transferred to buffer (d)

g d = d + c/4

127
a

b

d

c

Dynamic Topology

g When CàB transmission unreliable,
mass transferred to buffer (d)

g d = d + c/4

128
a

b

d

c

No loss
of mass

even with
message loss

Dynamic Topology

g When CàB transmission reliable,
mass transferred to b

g b = 3b/4 + c/4 + d

129
a

b

d

c

No loss
of mass

even with
message loss

Does This Work ?

130

Does This Work ?

131

0 5 10 15 20
0.2

0.4

0.6

0.8

1

k

z j
[k

]

Time-Varying Column Stochastic Matrix

g Mass is conserved

g Time-varying network

è Matrix varies over iterations

132

Matrix Mi for i-th iteration

State Transitions

g x = state vector =

g x[0] = initial state vector

g x[t] = iteration t
133

a
b
c
d
e
f
g

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

State Transitions

g x[1] = M1 x[0]
g x[2] = M2 x[1] = M2 M1 x[0]

…

g x[t] = Mk Mk-1 … M2 M1 x[0]

134

State Transitions

g x[t] = Mk Mk-1 … M2 M1 x[0]

Matrix product converges to
column stochastic matrix with identical columns

p p p
q q q
r r r

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

…

State Transition

After k iterations

k+1

=

p p p
q q q
r r r

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

p p p
q q q
r r r

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

p p p
q q q
r r r

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

a
b
c
d
e
f
g

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

a
b
c
d
e
f
g

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

a
b
c
d
e
f
g

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

Mk+1 …

…

z z z
…

State Transition

After k iterations

k+1

=

p p p
q q q
r r r

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

p
q
r

p p p
q q q
r r r

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

p p p
q q q
r r r

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

a
b
c
d
e
f
g

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

a
b
c
d
e
f
g

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

a
b
c
d
e
f
g

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

Mk+1 …

…

z
w

z
w

z
w…

z * sum
w * sum

State Transitions

g After k iterations, state of first node has the form

z(k) * sum of inputs

where z(k) changes each iteration (k)

g Does not converge to average

138

Solution

g Run two iterations in parallel

iFirst : original inputs

iSecond : input = 1

139

Solution

g Run two iterations in parallel

iFirst : original inputs

iSecond : input = 1

g After k iterations …

first algorithm: z(k) * sum of inputs
second algorithm: z(k) * number of nodes

Solution

g Run two iterations in parallel

iFirst : original inputs

iSecond : input = 1

g After k iterations …

first algorithm: z(k) * sum of inputs
second algorithm: z(k) * number of nodes

ratio = average

1420 5 10 15 20
0

1

2

3

k

y
j
[k

]/
z k

[k
]

0 5 10 15 20
0.2

0.4

0.6

0.8

1

k

z j
[k

]

0 5 10 15 20
0

0.5

1

1.5

k

y
j
[k

]

ratio

denominatornumerator

time time

time

