Tutorial: Part 2

Security and Privacy in Distributed Optimization and Learning

Nitin Vaidya Georgetown University

Slides & Videos

 \blacksquare Slides and videos for the tutorial posted at

https://disc.georgetown.domains

Visit the tab for Talks at the above page

Outline

argmin $\sum f_i(x)$

Each agent *i* knows own cost function $f_i(x)$ $\mathcal{L}_{\mathcal{A}}$

Need to cooperate to minimize $\sum f_i(x)$

\rightarrow Distributed algorithms

Architectures

Architectures

Jargon

I tend to refer to to all the variants as "distributed", but the literature uses three terminologies

■ Decentralized … Peer-to-peer

■ Distributed … Server-based (clients supply gradients)

■ Federated … Server-based (clients supply estimates)

… all are distributed algorithms

[Kairouz [et al 2018\]](https://arxiv.org/abs/1912.04977)

g Server maintains estimate x_k x_k

Federated Architecture [\[Kairouz et al 2018\]](https://arxiv.org/abs/1912.04977)

Server maintains estimate x_k

In each iteration

■ Each agent *i* • Receive x_k from server

Server maintains estimate x_k

In each iteration

Each agent i

- Receive x_k from server
- Compute $y_k = x_k \lambda_k \nabla f_i(x_k)$
- Send y_k to server

Server maintains estimate x_k

In each iteration

- **Each agent i**
	- Receive x_k from server
	- Compute $y_k = x_k \lambda_k \nabla f_i(x_k)$
	- Send y_k to server

■ Server updates estimate

$$
x_{k+1} \leftarrow \frac{1}{n} \sum y_i
$$

Each agent i

- Receive x_k from server
- Compute $y_k = x_k \lambda_k \nabla f_i(x_k)$
- \bullet Send y_k to server

■ Server updates estimate

$$
x_{k+1} \leftarrow \frac{1}{n} \sum y_i
$$

Federated Architecture: Stochastic Version

Server maintains estimate x_k

In each iteration

- **Each agent i in a size-s subset**
	- Receive x_k from server
	- Compute $y_k = x_k \lambda_k \nabla f_i(x_k)$
	- Send y_k to server

Server updates estimate

$$
x_{k+1} \leftarrow \frac{1}{s} \sum y_i
$$

Recall

Federated Architecture: **Stochastic Version**

■ To ensure correct "weights", agents must be sampled uniformly

Server maintains estimate x_k

Server maintains estimate x_k

In each iteration

■ Each agent *i*

Receives x_k from server

Server maintains estimate x_k

In each iteration

■ Each agent *i*

- Receives x_k from server
- Uploads gradient $\nabla f_i(x_k)$

Server maintains estimate x_k

In each iteration

Each agent i

- Receives x_k from server
- Uploads gradient $\nabla f_i(x_k)$

 x_k **Server** $\nabla f_3(x_k)$ $\nabla f_1(x_k)$

Server updates estimate $x_{k+1} \leftarrow x_k - \lambda_k$ $\bigvee \nabla f_i(x_k)$ **Distributed Optimization: Stochastic Version**

Server maintains estimate x_k

In each iteration

Each agent i in a subset

- **Receives** x_k from server
- Uploads gradient $\nabla f_i(x_k)$

 x_k

Server updates estimate

$$
x_{k+1} \leftarrow x_k - \lambda_k \sum \nabla f_i(x_k)
$$

Stochastic Distributed Machine Learning [\[Bottou,Curtis,Nocedal](https://arxiv.org/abs/1606.04838) 2016]

Two dimensions of randomization

 \blacksquare Select a subset of agents randomly in each round

Stochastic Distributed Machine Learning

Two dimensions of randomization

 \blacksquare Select a subset of agents randomly in each round

Each agent may compute gradient over a subset of data available to that agent

Recall

Stochastic Distributed Machine Learning Heterogeneous Case ("non-I.I.D.")

Each agent has access to a subset of the dataset

 $\rightarrow f_i(x) \neq f_i(x)$

 \rightarrow Each agent draws gradients from a different distribution

■ Need to be careful to ensure equal "weights" for agents

Availability of multiple agents provides parallelism

Stochastic Distributed Machine Learning Homogeneous Case ("I.I.D.")

Each agent has access to the same dataset

- $\rightarrow f_i(x) = f_i(x)$
- \rightarrow Each agent draws gradients with the same distribution

Availability of multiple agents provides parallelism

Diplomization Methods for Large-Scale Machine Learning Léon Bottou, Frank E. Curtis, Jorge Nocedal 2018

Other Variations

- … asynchronous
- … gradient compression

… shared memory

Disadvantage of Synchronous Computation

■ The server cannot update estimate until ALL clients have responded

■ Slowest client dictates speed ... stragglers are bad

 \rightarrow Asynchronous computation to the rescue
Recall ... Synchronous Algorithm

Server maintains estimate x_k

In each iteration

Each agent i

- Receives x_k from server
- Uploads gradient $\nabla f_i(x_k)$

■ Server updates estimate

$$
x_{k+1} \leftarrow x_k - \lambda_k \sum \nabla f_i(x_k)
$$

Asynchrony

Different research communities use the term somewhat differently

- Distributed algorithms (ACM PODC, for instance): Delays are finite, but unbounded
- Decentralized control (e.g., CDC) and machine learning (e.g., NeurIPS):
	- Bounded delays, or
	- Strong assumptions on delay distribution

Optimization literature typically uses the latter interpretation

- No need to wait for all gradients
- Example ... update server's estimate after receiving gradient from any client

Agent i

- Receive current x from server
- Uploads gradient $\nabla f_i(x)$

■ Server updates estimate on receiving gradient $\nabla f_i(.)$ from any client j

$$
x \leftarrow x - \lambda_{k,j} \cdot (??)
$$

Recall

Different agents may experience different delays

Different agents may experience different delays $\mathcal{L}_{\mathcal{A}}$

■ Need to ensure equal "weights"

• Adjust step size proportionally with time between updates from a given agent

$$
x_{k+1} \leftarrow x_k - \lambda_{k,j} \nabla f_j(?)
$$

Different agents may experience different delays

■ Need to ensure equal "weights"

• Adjust step size proportionally with time between updates from a given agent

$$
x_{k+1} \leftarrow x_k - \lambda_{k,j} \nabla f_j(?)
$$

• Use "stale" gradients from agents, if needed (use all agents in each iteration)

$$
x_{k+1} \leftarrow x_k - \lambda_k \sum \nabla f_i(?)
$$

Asynchronous Message Passing

- \blacksquare Much of the work implicitly assumes message passing
- Agents receives a "consistent" view of the entire state vector x_k from the server

and their updates are applied "atomically"

$$
x_{k+1} \leftarrow x_k - \lambda_k \sum \nabla f_i(?)
$$

Behavior may be different in shared memory $_{46}$

Asynchronous Shared Memory [[Alistarh et al. 2018](https://arxiv.org/abs/1803.08841)]

Agents read elements of x independently … not an "atomic read"

Updates of x are also not atomic

Agents have an inconsistent view of the state of x

Asynchronous Shared Memory [[Alistarh et al. 2018](https://arxiv.org/abs/1803.08841)]

Agents read elements of x independently … not an "atomic read"

Updates of x are also not atomic

Agents have an inconsistent view of the state of x

$$
\begin{array}{|c|c|}\n\hline\n1 & x - \lambda \nabla f_1(.) & \n\hline\n0 & & 0 \\
\hline\n2 & & & 5\n\end{array}
$$

Initial x read by agent 1

Agent 1's update applied partially so far Asynchronous Shared Memory [[Alistarh et al. 2018](https://arxiv.org/abs/1803.08841)]

Agents read elements of x independently … not an "atomic read"

Updates of x are also not atomic

Agents have an inconsistent view of the state of x

1 0 2 3 0 5 $x - \lambda \nabla f_1(.)$ Agent 2 reads this "inconsistent" vector as x and computes gradient

Initial x read by agent 1

Agent 1's update applied partially so far

Gradient Compression

E Length of gradient vector equals length of vector x

- Gan be very large \ldots for instance, x may represent parameters of a deep neural network
- Compression … reduce communication cost
	- Only send elements of gradient vector that have changed "significantly" since last transmission of gradient
	- iOnly send top-K largest elements of the gradient vector

Architectures

Architectures

Peer-to-Peer (p2p)

Decentralized

- **E** Version not considered in this tutorial
	- Each agent knows identical cost function $f(x)$
	- Agents cooperate to determine argmin $f(x)$
	- Agent *i* responsible to determine *i*-th element of argmin $f(x)$

- **U** Version not considered in this tutorial
	- Each agent knows identical cost function $f(x)$
	- Agents cooperate to determine argmin $f(x)$
	- Agent *i* responsible to determine *i*-th element of argmin $f(x)$
- \blacksquare Version considered in this tutorial
	- Agent *i* knows identical cost function $f_i(x)$
	- Agents cooperate to determine argmin $\sum f_i(x)$
	- \bullet Each agent learns argmin $\sum f_i(x)$

Many Variations

- Synchronous or Asynchronous
- **Lossy or reliable links**

We will consider the synchronous setting and error-free links

A Detour … Average Consensus

■ Each node has an input (scalar or vector)

Average consensus: Output $=$ average of inputs

As time $\rightarrow \infty$, values converge to *average* of inputs

after k iterations

Connected Undirected Graphs

after k iterations

$$
\left(\begin{array}{c} a \\ b \\ c \end{array}\right) := M^{k} \left(\begin{array}{c} a \\ b \\ c \end{array}\right)
$$

■ *Average* consensus if M doubly stochastic

- Matrix elements in [0,1]
- M_{ii} non-zero if link (i,j) exists
- Each row & each column adds to 1

$$
\begin{pmatrix}\n a \\
 b \\
 c\n\end{pmatrix}\n\mathrel{\mathop{:}}= \n\begin{pmatrix}\n 3/4 & 0 & 1/4 \\
 0 & 3/4 & 1/4 \\
 1/4 & 1/4 & 1/2\n\end{pmatrix}\n\begin{pmatrix}\n a \\
 b \\
 c\n\end{pmatrix}\n=\mathbf{M}\n\begin{pmatrix}\n a \\
 b \\
 c\n\end{pmatrix}
$$

Due to stochastic rows, each new state in convex hull of old states

Due to stochastic columns, total "mass" (sum of states) is preserved

Optimization argmin $\sum f_i(x)$

Distributed Optimization

$$
f(x) = \sum f_i(x)
$$

Iterative algorithm

- **Each agent maintains an estimate**
- Local estimates shared with neighbors & updated in each iteration
- **Example Estimates converge to optimum**

Example based on [Nedic [and Ozdaglar, 2009\]](http://www.ifp.illinois.edu/~angelia/distributed_journal_final.pdf)

$$
x_1[t+1] = \frac{2}{3}x_1[t] + \frac{1}{3}x_3[t] - \lambda_t \nabla f_1(x_1[t])
$$

$$
x_1[t+1] = \frac{2}{3}x_1[t] + \frac{1}{3}x_3[t] - \lambda_t \nabla f_1(x_1[t])
$$

$$
x_3[t+1] = \frac{1}{3}x_1[t] + \frac{1}{3}x_2[t] + \frac{1}{3}x_3[t] - \lambda_t \nabla f_3(x_3[t])
$$

Decentralized Optimization

In the limit as $t\to\infty$

■ Consensus: All agents converge to same estimate

• Optimality: Estimates converge to identical point in $argmin_{x} \sum_i f_i(x)$

Why does this work?

$$
x_1[t+1] \leftarrow \frac{2}{3}x_1[t] + \frac{1}{3}x_3[t] - \alpha \nabla f_1(x_1[t])
$$

$$
x_3[t+1] \leftarrow \frac{1}{3}x_1[t] + \frac{1}{3}x_2[t] + \frac{1}{3}x_3[t] - \alpha \nabla f_3(x_3[t])
$$

$$
x_1[t+1] \leftarrow \frac{2}{3}x_1[t] + \frac{1}{3}x_3[t] - \alpha_t \nabla f_1(x_1[t])
$$

$$
x_3[t+1] \leftarrow \frac{1}{3}x_1[t] + \frac{1}{3}x_2[t] + \frac{1}{3}x_3[t] - \alpha_t \nabla f_3(x_3[t])
$$

$$
x[t+1] \leftarrow \boxed{M x[t]} - \alpha_t \nabla f(x[t])
$$

Doubly stochastic $\mathsf{M}% _{T}=\mathsf{M}_{T}\!\left(a,b\right) ,\ \mathsf{M}_{T}=\mathsf{M}_{T}\!\left(a,b\right) ,$

M here is also doubly stochastic, but different from the average consensus example

M identical to that in the average consensus example will also suffice

$$
x[t+1] \leftarrow \boxed{M x[t]} - \alpha_t \nabla f(x[t])
$$

Doubly stochastic M

$$
x[1] \leftarrow M x[0] - \alpha_0 \nabla f(x[0])
$$

$$
x[2] \leftarrow M x[1] - \alpha_1 \nabla f(x[1])
$$

$$
x[1] \leftarrow M x[0] - \alpha_0 \nabla f(x[0])
$$

$$
x[2] \leftarrow M x[1] - \alpha_1 \nabla f(x[1])
$$

=
$$
M^2 x[0] - \alpha_0 M \nabla f(x[0]) - \alpha_1 \nabla f(x[1])
$$

$$
x[1] \leftarrow M x[0] - \alpha_0 \nabla f(x[0])
$$

$$
x[2] \leftarrow M x[1] - \alpha_1 \nabla f(x[1])
$$

=
$$
M^2 x[0] - \alpha_0 M \nabla f(x[0]) - \alpha_1 \nabla f(x[1])
$$

 $x[3] \leftarrow M x[2] - \alpha_2 \nabla f(x[2])$

$$
x[1] \leftarrow M x[0] - \alpha_0 \nabla f(x[0])
$$

$$
x[2] \leftarrow M x[1] - \alpha_1 \nabla f(x[1])
$$

= $M^2 x[0] - \alpha_0 M \nabla f(x[0]) - \alpha_1 \nabla f(x[1])$

$$
x[3] \leftarrow M x[2] - \alpha_2 \nabla f(x[2])
$$

= $M^3 x[0]$

$$
- \alpha_0 M^2 \nabla f(x[0]) - \alpha_1 M \nabla f(x[1]) - \alpha_2 \nabla f(x[2])
$$

$$
x[1] \leftarrow M x[0] - \alpha_0 \nabla f(x[0])
$$

$$
x[2] \leftarrow M x[1] - \alpha_1 \nabla f(x[1])
$$

= $M^2 x[0] - \alpha_0 M \nabla f(x[0]) - \alpha_1 \nabla f(x[1])$

$$
x[3] \leftarrow M x[2] - \alpha_2 \nabla f(x[2])
$$

= $M^3 x[0]$
 $-\alpha_0 M^2 \nabla f(x[0]) - \alpha_1 M \nabla f(x[1]) - \alpha_2 \nabla f(x[2])$

 α_k decreasing with time

Claims

Estimates at different nodes converge \rightarrow Consensus

The estimates converges to argmin $\sum f_i(x)$

Part 3

Byzantine Fault-Tolerant (Secure) Optimization & Learning

Another Detour …

Background

How do you get from

wireless systems to distributed optimization/learning?

Continue to part 3

Byzantine Fault-Tolerant (Secure) Optimization & Learning

Additional Slides

Connected Undirected Graphs

■ Consensus if M row stochastic

- Matrix elements in [0,1]
- M_{ii} non-zero if link (i,j) exists
- Each row adds to 1

$$
\begin{pmatrix} a \\ b \\ c \end{pmatrix} := M^{k} \begin{pmatrix} a \\ b \\ c \end{pmatrix} \rightarrow \begin{pmatrix} p & q & r \\ p & q & r \\ p & q & r \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}
$$

Stochastic M
c = a/4+b/4+c/2

a = 3a/4+c/4
a = 3a/4+c/4

stochastic M

a b c \int ⎝ ⎜ $\overline{}$ \overline{a} ⎠ \vert := M *a b c* $\big($ ⎝ $\overline{}$ $\overline{}$ \overline{a} \overline{y} $\begin{array}{|c|c|c|c|c|}\n\hline\n\text{Row} & b & \text{:= } \mathsf{M} & b \\
\hline\n\text{hostic M} & & \text{in } \mathsf{M} & \text{in } \mathsf{M} & \text{in } \mathsf{M} & \text{in } \mathsf{M}\n\end{array}$

Due to stochastic rows, each new state in convex hull of old states

Decentralized Optimization over Lossy Links

$$
\begin{pmatrix}\na \\
b \\
c\n\end{pmatrix} := \begin{pmatrix}\n3/4 & 0 & 1/4 \\
0 & 3/4 & 1/4 \\
1/4 & 1/4 & 1/2\n\end{pmatrix} \begin{pmatrix}\na \\
b \\
c\n\end{pmatrix} = M \begin{pmatrix}\na \\
b \\
c\n\end{pmatrix}
$$
\n
$$
M
$$
\n
$$
b = 3b/4 + c/4
$$
\n
$$
c = a/4 + b/4 + c/2
$$
\n
$$
a = 3a/4 + c/4
$$

$$
\begin{pmatrix}\na \\
b \\
c\n\end{pmatrix} := M^k \begin{pmatrix}\na \\
b \\
c\n\end{pmatrix}\n\rightarrow\n\begin{pmatrix}\n1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3\n\end{pmatrix}\n\begin{pmatrix}\na \\
b \\
c\n\end{pmatrix}
$$
\n**Doublely**\n**stochastic M**\n**b**\n
$$
b = 3b/4 + c/4
$$
\n**c**\n
$$
a = 3a/4 + c/4
$$
Mass Transfer + Accumulation An Alternate View

Each node "transfers mass" to neighbors via messages

Next state $=$ Total received mass

Mass Transfer + Accumulation An Alternate View

E Each node "transfers mass" to neighbors via messages

Next state $=$ Total received mass

Conservation of Mass

a a+b+c constant after each iteration

Wireless Transmissions Unreliable

Impact of Unreliability

$$
\begin{pmatrix}\na \\
b \\
c\n\end{pmatrix} = \begin{pmatrix}\n3/4 & 0 & 1/4 \\
0 & 3/4 & 0 \\
1/4 & 1/4 & 1/2\n\end{pmatrix} \begin{pmatrix}\na \\
b \\
c\n\end{pmatrix}
$$
\n
$$
b = 3b/4 + 8
$$
\n
$$
c = a/4 + b/4 + c/2
$$
\n
$$
a = 3a/4 + c/4
$$

Average consensus over lossy links ?

Potential Solution?

Assume that

transmitter KNOWS

when a message is not delivered

Potential Solution?

When mass not transferred to neighbor,

keep it to yourself

Convergence … if nodes intermittently connected

$$
\begin{pmatrix}\na \\
b \\
c\n\end{pmatrix} = \begin{pmatrix}\n3/4 & 0 & 1/4 \\
0 & 3/4 & 0 \\
1/4 & 1/4 & 3/4\n\end{pmatrix} \begin{pmatrix}\na \\
b \\
c\n\end{pmatrix}
$$
\n
$$
b = 3b/4 + 8
$$
\n
$$
c = a/4 + b/4 + c/2 + c/4
$$
\n
$$
c/4
$$
\n
$$
c = 3a/4 + c/4
$$
\n
$$
a = 3a/4 + c/4
$$

Assume that

when a message is not delivered

Better Model ?

No common knowledge regarding message delivery

n Introduce memory

Solution Sketch

 $S =$ mass C wanted to transfer to node A in total so far

 $R =$ mass A has received from node C in total so far

Solution Sketch

■ Node C transmits quantity S message may be lost

 \blacksquare When it is received, node A accumulates (S-R)

What Does That Do ?

What Does That Do ?

\blacksquare Implements virtual buffers

Dynamic Topology

When $C\rightarrow B$ transmission unreliable, mass transferred to buffer (d)

Dynamic Topology

When $C\rightarrow B$ transmission unreliable, mass transferred to buffer (d)

Dynamic Topology

When $C\rightarrow B$ transmission reliable, mass transferred to b

No loss of mass even with message loss

Does This Work ?

Does This Work ?

Time-Varying Column Stochastic Matrix

 \blacksquare Mass is conserved

 \blacksquare Time-varying network

 \rightarrow Matrix varies over iterations

Matrix M_i for i-th iteration

$$
\begin{bmatrix}\n a \\
 b \\
 c \\
 d \\
 e \\
 f \\
 g\n \end{bmatrix}
$$

 $x[0] = \text{initial state vector}$

$$
\blacksquare \mathsf{x}[t] = iteration \ t
$$

\n- ■
$$
x[1] = M_1 x[0]
$$
\n- ■ $x[2] = M_2 x[1] = M_2 M_1 x[0]$
\n- ∴ $x[t] = M_k M_{k-1} \ldots M_2 M_1 x[0]$
\n

$$
\blacksquare \; \mathbf{x}[t] = M_k \; M_{k-1} \; \dots \; M_2 \; M_1 \; \mathbf{x}[0]
$$

Matrix product converges to column stochastic matrix with identical columns

After k iterations

After k iterations

After k iterations, state of first node has the form

z(k) * sum of inputs

where $z(k)$ changes each iteration (k)

Does not converge to average

\blacksquare Run two iterations in parallel

- First : original inputs
- \bullet Second : input = 1

\blacksquare Run two iterations in parallel

- First : original inputs
- Second : input $= 1$
- After k iterations …

first algorithm: *z*(k) * sum of inputs second algorithm: *z*(k) * number of nodes

\blacksquare Run two iterations in parallel

- First : original inputs
- Second : input $= 1$
- After k iterations …

first algorithm: *z*(k) * sum of inputs second algorithm: *z*(k) * number of nodes

ratio = **average**

