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Distributed Optimization

g Each agent ! knows own cost function "# $

g Need to cooperate to minimize ∑"# $

è Distributed algorithms
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Jargon

I tend to refer to to all the variants as “distributed”,
but the literature uses three terminologies

g Decentralized … Peer-to-peer

g Distributed … Server-based (clients supply gradients)

g Federated … Server-based (clients supply estimates)

… all are distributed algorithms



Federated Architecture
[Kairouz et al 2018]

g Server maintains estimate !" !"
Server

https://arxiv.org/abs/1912.04977


g Server maintains estimate !"

In each iteration

g Each agent i
iReceive !" from server
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Federated Architecture
[Kairouz et al 2018]

!"

https://arxiv.org/abs/1912.04977


g Server maintains estimate !"

In each iteration

g Each agent i
iReceive !" from server
iCompute #" = !" − &"∇()(!")
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g Server maintains estimate !"

In each iteration

g Each agent i
iReceive !" from server
iCompute #" = !" − &"∇()(!")
iSend #" to server

g Server updates estimate
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g Server maintains estimate !"

In each iteration

g Each agent i
iReceive !" from server
iCompute #" = !" − &"∇()(!")
iSend #" to server

g Server updates estimate
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g Server maintains estimate !"

In each iteration

g Each agent i
iReceive !" from server
iCompute #" = !" − &"∇()(!")
iSend #" to server

g Server updates estimate
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g Server maintains estimate !"

In each iteration

g Each agent i in a size-s subset
iReceive !" from server
iCompute #" = !" − &"∇()(!")
iSend #" to server

g Server updates estimate
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g To ensure correct “weights”,
agents must be sampled uniformly
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Distributed Optimization

g Server maintains estimate !"
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Distributed Optimization

g Server maintains estimate !"

In each iteration

g Each agent i
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Distributed Optimization

g Server maintains estimate !"

In each iteration

g Each agent i
iReceives !" from server
iUploads gradient #$%(!")

g Server updates estimate
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g Server maintains estimate !"

In each iteration

g Each agent i in a subset
iReceives !" from server
iUploads gradient #$%(!")

g Server updates estimate
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Distributed Optimization:
Stochastic Version



Stochastic Distributed Machine Learning
[Bottou,Curtis,Nocedal 2016]

Two dimensions of randomization

g Select a subset of agents
randomly in each round

Server

https://arxiv.org/abs/1606.04838


Stochastic Distributed Machine Learning

Two dimensions of randomization

g Select a subset of agents
randomly in each round

g Each agent may compute gradient
over a subset of data available
to that agent

Server
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Stochastic Distributed Machine Learning
Heterogeneous Case (“non-I.I.D.”)

g Each agent has access to a subset of the dataset

è !" # ≠ !% #

è Each agent draws gradients from a different distribution

g Need to be careful to ensure equal “weights” for agents
g Availability of multiple agents provides parallelism



Stochastic Distributed Machine Learning
Homogeneous Case (“I.I.D.”)

g Each agent has access to the same dataset

è !" # = !$ #

è Each agent draws gradients with the same distribution

g Availability of multiple agents provides parallelism



!

g Optimization Methods for Large-Scale Machine Learning
Léon Bottou, Frank E. Curtis, Jorge Nocedal
2018
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Other Variations

… asynchronous
… gradient compression
… shared memory 

Server



Disadvantage of Synchronous Computation

g The server cannot update estimate until ALL clients 
have responded

g Slowest client dictates speed … stragglers are bad

è Asynchronous computation to the rescue
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Recall … Synchronous Algorithm

g Server maintains estimate !"

In each iteration

g Each agent i
iReceives !" from server
iUploads gradient #$%(!")

g Server updates estimate
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Asynchrony

Different research communities use the term somewhat 
differently

g Distributed algorithms (ACM PODC, for instance):
Delays are finite, but unbounded

g Decentralized control (e.g., CDC) and machine learning 
(e.g., NeurIPS):

• Bounded delays, or
• Strong assumptions on delay distribution

Optimization literature typically uses
the latter interpretation



Asynchronous Algorithm

g No need to wait for all gradients

g Example … update server’s estimate after receiving
gradient from any client

39



Asynchronous Algorithm

g Server maintains estimate !

g Agent i
iReceive current ! from server
iUploads gradient "#$(!)

Server
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Asynchronous Algorithm

g Server maintains estimate !

g Agent i
iReceive current ! from server
iUploads gradient "#$(!)

g Server updates estimate on receiving gradient 
"#'(. ) from any client )

! ⟵ ! − ,-,' . (? ? )

Server
!
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Asynchronous Algorithm

g Different agents may experience different delays



Asynchronous Algorithm

g Different agents may experience different delays

g Need to ensure equal “weights”

iAdjust step size proportionally with time between updates 
from a given agent
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Asynchronous Algorithm

g Different agents may experience different delays

g Need to ensure equal “weights”

iAdjust step size proportionally with time between updates 
from a given agent

!"#$ ⟵ !"−'",) *+)(? )

iUse “stale” gradients from agents, if needed (use all agents 
in each iteration)

!"#$ ⟵ !" − '" ∑*+0 ?



Asynchronous Message Passing

g Much of the work implicitly assumes message 
passing

g Agents receives a “consistent” view of the entire state 
vector !" from the server

and their updates are applied “atomically”

!"#$⟵ !" − '" ∑)*+ ?

g Behavior may be different in shared memory 46



Asynchronous Shared Memory
[Alistarh et al. 2018]

g Agents read elements of ! independently
… not an “atomic read”

g Updates of ! are also not atomic

g Agents have an inconsistent view of the state of !

Shared Memory

Read(![#]) Write(![#])

https://arxiv.org/abs/1803.08841
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Asynchronous Shared Memory
[Alistarh et al. 2018]

g Agents read elements of ! independently
… not an “atomic read”

g Updates of ! are also not atomic

g Agents have an inconsistent view of the state of !

1
0
2

Initial !

3
0
5

Agent 1’s update
applied partially so far

! − # $%&(. )
Agent 2 reads

this “inconsistent” vector as !
and computes gradient

Initial !
read by agent 1

https://arxiv.org/abs/1803.08841


Gradient Compression

g Length of gradient vector equals length of vector !

g Can be very large … for instance, ! may represent 
parameters of a deep neural network

g Compression … reduce communication cost

iOnly send elements of gradient vector that have changed 
“significantly” since last transmission of gradient

iOnly send top-K largest elements of the gradient vector  
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Architectures
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Many Variations
[Tsitsiklis 1984]

g Version not considered in this tutorial

iEach agent knows identical cost function ! "
iAgents cooperate to determine argmin ! "
iAgent # responsible to determine #-th element of argmin ! "

53
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Many Variations
[Tsitsiklis 1984]

g Version not considered in this tutorial

iEach agent knows identical cost function ! "
iAgents cooperate to determine argmin ! "
iAgent # responsible to determine #-th element of argmin ! "

g Version considered in this tutorial

iAgent # knows identical cost function !$ "
iAgents cooperate to determine argmin ∑!$ "
iEach agent learns argmin ∑!$ "
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Many Variations

g Synchronous or Asynchronous

g Lossy or reliable links

We will consider the synchronous setting
and error-free links

55



A Detour … Average Consensus



Average Consensus

g Each node has an input (scalar or vector)

g Average consensus: Output = average of inputs

57



Average Consensus
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Average Consensus
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c
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a
a = 3a/4+ c/4

b = 3b/4+ c/4

c = a/4+b/4+c/2



a = (18/4+1/4) = 19/4

b = (6/4+1/4)=7/4

c = (2/4+6/4+1/2) = 10/4
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Average Consensus



a = (18/4+1/4) = 19/4

b = (6/4+1/4)=7/4

c = (2/4+6/4+1/2) = 10/4

1

2

6

Average Consensus

As time à ∞, values converge to average of inputs
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Connected Undirected Graphs
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• Mij non-zero if link (i,j) exists

• Each row & each column adds to 1
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Average Consensus
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Optimization
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Distributed Optimization

Iterative algorithm

g Each agent maintains an estimate

g Local estimates shared with neighbors & updated in 
each iteration

g Estimates converge to optimum

71

! " = $!% "



Example based on [Nedic and Ozdaglar, 2009]

x1

x3

x2

x3 x3

http://www.ifp.illinois.edu/~angelia/distributed_journal_final.pdf


x1

x3

x2

x3 x3

!"[$]
Change of notation

Iteration indexagent identifier
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1
3
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1
3
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1
3
x3[t]−λt ∇h3 (x3[t])!"

x1 [t +1]=
2
3
x1 [t]+

1
3
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Decentralized Optimization

In the limit as  t à ∞

g Consensus: All agents converge to same estimate

g Optimality: Estimates converge to identical point in
argminx ∑" #" $
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Why does this work?
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![# + 1] ⟵ ( ![#] − *+ ,- ![#]
Doubly
stochastic

M

M here is also doubly stochastic,
but different from

the average consensus example

M identical to that in the
average consensus example 

will also suffice
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![# + 1] ⟵ ( ![#] − *+ ,- ![#]

![1] ⟵ ( ![0] − */ ,- ![0]
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![# + 1] ⟵ ( ![#] − *+ ,- ![#]

![1] ⟵ ( ![0] − */ ,- ![0]

![2] ⟵ ( ![1] − *1 ,- ![1]
= (3 ! 0 − */( ,- ! 0 − *1 ,- ![1]
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*6 decreasing with time



Claims

g Estimates at different nodes converge è Consensus

g The estimates converges to 

89
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Part 3

g Byzantine Fault-Tolerant (Secure)
Optimization & Learning



Another Detour …

Background
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Software architecture
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bounds
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How do you get from

wireless systems to distributed optimization/learning?
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Byzantine 
consensus

Wireless 
networks

Average 
consensus 

+ lossy links

Average 
consensus + 

Byzantine faults

Learning + 
Byzantine faults

Optimization + 
Byzantine faults

Optimizatio/
/ Learning
+ Privacy



1980: Pease, Shostak, Lamport
Byzantine consensus

1986: Dolev et al.
Approximate

Byzantine consensus

Tsitsiklis 1984

Hajnal 1958
Weak ergodicity
of 
nonhomogeneous 
Markov chains

Jadbabaei, Lin, Morse 2003
Flocking problem

1983: Fischer, Lynch, Paterson
Asynchronous consensus

impossibility result

DeGroot 1974
Reaching a consensus

Decentralized
Control

Distributed
Computing

Nedich, Ozdaglar 2009



Continue to part 3

Byzantine Fault-Tolerant (Secure)
Optimization & Learning
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Connected Undirected Graphs
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• Mij non-zero if link (i,j) exists

• Each row adds to 1
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Decentralized Optimization over Lossy Links
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g Each node “transfers mass” to neighbors via messages

g Next state = Total received mass
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g Each node “transfers mass” to neighbors via messages

g Next state = Total received mass
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Conservation of Mass

g a+b+c constant after each iteration
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Wireless Transmissions Unreliable
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Impact of Unreliability
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Conservation of Mass
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Average consensus over lossy links ?
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Potential Solution?

Assume that

transmitter KNOWS

when a message is not delivered
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Potential Solution?

When mass not transferred to neighbor,

keep it to yourself
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Convergence … if nodes intermittently connected
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Loss Model

Assume that

transmitter KNOWS

when a message is not delivered
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X



Better Model ?

No common knowledge regarding message delivery

121



Solution

g Introduce memory
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Solution Sketch

g S =  mass C wanted to 
transfer to node A
in total so far

g R = mass A has  
received from
node C
in total so far
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Solution Sketch

g Node C transmits quantity S
….   message may be lost

g When it is received,
node A accumulates (S-R)
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What Does That Do ?
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What Does That Do ?

g Implements virtual buffers
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Dynamic Topology

g When CàB transmission unreliable,
mass transferred to buffer (d)

g d = d + c/4
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Dynamic Topology

g When CàB transmission unreliable,
mass transferred to buffer (d)

g d = d + c/4
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Dynamic Topology

g When CàB transmission reliable,
mass transferred to b

g b = 3b/4 + c/4 + d

129
a

b

d

c

No loss
of mass

even with
message loss



Does This Work ?
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Does This Work ?
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Time-Varying Column Stochastic Matrix

g Mass is conserved

g Time-varying network

è Matrix varies over iterations
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Matrix Mi for i-th iteration



State Transitions

g x = state vector  =

g x[0] = initial state vector

g x[t] = iteration t
133
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State Transitions

g x[1] = M1 x[0]
g x[2] = M2 x[1] = M2 M1 x[0]

…

g x[t] = Mk Mk-1 … M2 M1 x[0]
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State Transitions

g x[t] = Mk Mk-1 … M2 M1 x[0]

Matrix product converges to
column stochastic matrix with identical columns
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State Transition

After k iterations
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State Transition

After k iterations

k+1

=
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State Transitions

g After k iterations, state of first node has the form

z(k) * sum of inputs

where z(k) changes each iteration (k)

g Does not converge to average
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Solution

g Run two iterations in parallel

iFirst : original inputs

iSecond : input = 1
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Solution

g Run two iterations in parallel

iFirst : original inputs

iSecond : input = 1

g After k iterations …

first algorithm:      z(k) * sum of inputs
second algorithm:      z(k) * number of nodes



Solution

g Run two iterations in parallel

iFirst : original inputs

iSecond : input = 1

g After k iterations …

first algorithm:     z(k) * sum of inputs
second algorithm:      z(k) * number of nodes

ratio =  average



1420 5 10 15 20
0

1

2

3

k

y
j
[k

]/
z k

[k
]

0 5 10 15 20
0.2

0.4

0.6

0.8

1

k

z j
[k

]

0 5 10 15 20
0

0.5

1

1.5

k

y
j
[k

]

ratio

denominatornumerator

time time

time


