Tutorial: Part 2

Security and Privacy
in Distributed Optimization and Learning

Nitin Vaidya
Georgetown University

Slides & Videos

m Slides and videos for the tutorial posted at

https.//disc.georgetown.domains

Visit the tab for Talks at the above page

Outline

argmin), f;(x)

Gradient Method

Gradient Method

Gradient Method

Distributed Optimization

m Each agent i knows own cost function f;(x)

® Need to cooperate to minimize) f;(x)

=>» Distributed algorithms

Gradient Method

Uniform weights

for f’'s

Xp+1 < X — Ag z Vfi(xx)

l

Gradient Method

Non-uniform weights
for f's

Gradient Method

Non-uniform weights

for f's

Gradient Method

92
e
L
D

(b

=

=

(U
2

-
D

e
-
©

ju
@)
Q.

=

Architectures

Architectures

Server

o

Jargon

| tend to refer to to all the variants as “distributed”,
but the literature uses three terminologies

®m Decentralized ... Peer-to-peer
m Distributed ... Server-based (clients supply gradients)
®m Federated ... Server-based (clients supply estimates)

... all are distributed algorithms

Federated Architecture
[]

B Server maintains estimate x;, N
k

Server

/]

)

https://arxiv.org/abs/1912.04977

Federated Architecture
[]

B Server maintains estimate x;,

Xk

In each iteration

Server

® Each agenti

® Receive x,, from server

7

https://arxiv.org/abs/1912.04977

Federated Architecture

B Server maintains estimate x;, N
k

Server

In each iteration ; \
/ }’3

® Each agenti
® Receive x,, from server ‘ ‘
® CompUte Vie = X — Akai(Xk)

® Send y, to server

Federated Architecture

B Server maintains estimate x;, N
k

Server

In each iteration 7 \
/ }’3

m Each agenti
® Receive x,, from server ‘ ‘
° CompUte Vie = X — }lkVﬁ(Xk)

® Send y, to server

B Server updates estimate

1
Xk+1 € Ez Vi

Federated Architecture

B Server maintains estimate x;, N
k

Server

In each iteration 7 \
/ }’3

® Each agenti
® Receive x,, from server ‘ ‘
° CompUte Vie = X — }lkVﬁ(Xk)

® Send y, to server

B Server updates estimate

1
Xk+1 € Ez Vi

Federated Architecture

B Server maintains estimate x;, N
k

Server

In each iteration - \
/ Y3

m Each agenti 3} \
® Receive x,, from server
® Compute v, = xx — A Vfi(xk)

® Send y, to server \

®m Server updates estimate

1
Xk+1 € Ez Vi

Replace single step

by multiple steps

Federated Architecture:

Stochastic Version

B Server maintains estimate x;,

In each iteration - \
Y1 / V3

® Receive x, from server
° CompUte Vie = X — }lkVﬁ(Xk)

® Send y, to server

B Server updates estimate

-
(_ — o
Xk+1 S Vi

Xk

Server

v

\

Recall

92
e
L
D

(b

=

=

(U
2

-
D

e
-
©

ju
@)
Q.

=

Federated Architecture:

Stochastic Version

® To ensure correct “weights”,
agents must be sampled uniformly

23

Distributed Optimization

B Server maintains estimate x;, N
k

Server

/]

)

Distributed Optimization

B Server maintains estimate x;,

In each iteration
/ﬁ ‘\
Xk Xk

m Each agenti /

® Receives x;, from server

Xk

Server

v

\

Distributed Optimization

B Server maintains estimate x;,

In each iteration

Vi(x
m Each agenti fl‘(/k)

® Receives x;, from server
® Uploads gradient Vf;(x)

Xk
Server
VN
Vf3(xk)
N\

Distributed Optimization

B Server maintains estimate x;,

In each iteration

m Each agenti
® Receives x;, from server
® Uploads gradient V£;(x;)

B Server updates estimate

v f1 ()
'

Xk
Server
BN
Vf3(xk)
N\

Xp+1 < X — Ay 2 Vi (xi)

Distributed Optimization:
Stochastic Version

B Server maintains estimate x;,

In each iteration

® Each agent i
® Receives x;, from server
® Uploads gradient Vf;(x)

B Server updates estimate

v f1 ()
'

Xk
Server
/TN
Vf3(xk)
N\

Xp+1 < X — Ay z Vi (xi)

Stochastic Distributed Machine Learning
[]

Two dimensions of randomization Server

7
B Select a subset of agents

randomly in each round

https://arxiv.org/abs/1606.04838

Stochastic Distributed Machine Learning

Two dimensions of randomization

B Select a subset of agents
randomly in each round

® Each agent may compute gradient
over a subset of data available
to that agent

Server

Recall

92
e
L
D

(b

=

=

(U
2

-
D

e
-
©

ju
@)
Q.

=

Stochastic Distributed Machine Learning
Heterogeneous Case (“non-1.1.D.”)

® Each agent has access to a subset of the dataset

> filx) # fj(x)

=» Each agent draws gradients from a different distribution

® Need to be careful to ensure equal “weights” for agents
®m Availability of multiple agents provides parallelism

Stochastic Distributed Machine Learning
Homogeneous Case (“I.1.D.”)

m Each agent has access to the same dataset

2> filx) = fj(x)

=» Each agent draws gradients with the same distribution

®m Availability of multiple agents provides parallelism

Léon Bottou, Frank E. Curtis, Jorge Nocedal
2018

34

https://arxiv.org/abs/1606.04838
https://arxiv.org/abs/1606.04838

Server

Other Variations

... asynchronous
... gradient compression
... Shared memory

Disadvantage of Synchronous Computation

® The server cannot update estimate until ALL clients
have responded

m Slowest client dictates speed ... stragglers are bad

=» Asynchronous computation to the rescue

36

Recall ... Synchronous Algorithm

B Server maintains estimate x;,

In each iteration

m Each agenti
® Receives x;, from server
® Uploads gradient V£;(x;)

®m Server updates estimate

v f1 ()
'

Xk
Server
B
Vf3(xk)
N\

Xp+1 < X — Ay 2 Vfi(xi)

Asynchrony

Different research communities use the term somewhat
differently

m Distributed algorithms (ACM PODC, for instance):
Delays are finite, but unbounded

®m Decentralized control (e.g., CDC) and machine learning
(e.g., NeurlPS):
® Bounded delays, or
® Strong assumptions on delay distribution

Optimization literature typically uses
the latter interpretation

Asynchronous Algorithm

® No need to wait for all gradients

B Example ... update server’s estimate after receiving
gradient from any client

39

Asynchronous Algorithm

B Server maintains estimate x

m Agenti
® Receive current x from server
® Uploads gradient V' £;(x)

Server

Asynchronous Algorithm

B Server maintains estimate x Server

m Agenti

) 4
® Receive current x from server

® Uploads gradient V' £;(x)

m Server updates estimate on receiving gradient
Vf;(.) from any client j

Xe—x—A;.(27)

Recall

92
e
L
D

(b

=

=

(U
2

-
D

e
-
©

ju
@)
Q.

=

Asynchronous Algorithm

m Different agents may experience different delays

Asynchronous Algorithm
m Different agents may experience different delays

® Need to ensure equal “weights”

® Adjust step size proportionally with time between updates
from a given agent

Xp+1 < X =Mk j Vi(7)

Asynchronous Algorithm
m Different agents may experience different delays

B Need to ensure equal “weights”

® Adjust step size proportionally with time between updates
from a given agent

X1 < X —Ak,j VIi(7)

® Use “stale” gradients from agents, if needed (use all agents
in each iteration)

Xpyr < X — e LV (7)

Asynchronous Message Passing

B Much of the work implicitly assumes message
passing

B Agents receives a “consistent” view of the entire state
vector x; from the server

and their updates are applied “atomically”
Xer1 < X — A LVfi(7)

m Behavior may be different in shared memory 46

Asynchronous Shared Memory

[]

m Agents read elements of x independently
... hot an “atomic read”

m Updates of x are also not atomic

® Agents have an inconsistent view of the state of x

Shared Memory

A

Write (x[i])

Read(x[i])

A 4

https://arxiv.org/abs/1803.08841

Asynchronous Shared Memory

[]

m Agents read elements of x independently
... hot an “atomic read”

m Updates of x are also not atomic

® Agents have an inconsistent view of the state of x

x—AVA() |3

S

Initial x Agent 1’s update
read by agent 1 applied partially so far

https://arxiv.org/abs/1803.08841

Asynchronous Shared Memory

[]

m Agents read elements of x independently
... hot an “atomic read”

m Updates of x are also not atomic

® Agents have an inconsistent view of the state of x

x—AVA() |3
> . > Agent 2 reads
this “inconsistent” vector as x
S and computes gradient
Initial x Agent 1’s update

read by agent 1 applied partially so far

https://arxiv.org/abs/1803.08841

Gradient Compression
m Length of gradient vector equals length of vector x

m Can be very large ... for instance, x may represent
parameters of a deep neural network

m Compression ... reduce communication cost

® Only send elements of gradient vector that have changed
“significantly” since last transmission of gradient

® Only send top-K largest elements of the gradient vector

50

Architectures

Architectures

Multi-Agent

Peer-to-Peer (p2p)

Decentralized

Many Variations

[]

m Version not considered in this tutorial

® Each agent knows identical cost function f(x)
® Agents cooperate to determine argmin f(x)
® Agent i responsible to determine i-th element of argmin f(x)

53

https://dspace.mit.edu/handle/1721.1/15254

Many Variations

[]

m Version not considered in this tutorial

® Each agent knows identical cost function f(x)
® Agents cooperate to determine argmin f(x)
® Agent i responsible to determine i-th element of argmin f(x)

m Version considered in this tutorial

® Agent i knows identical cost function f;(x)
® Agents cooperate to determine argmin Y. f; (x)
® Each agent learns argmin Y. f;(x)

54

https://dspace.mit.edu/handle/1721.1/15254

Many Variations

B Synchronous or Asynchronous

m Lossy or reliable links

We will consider the synchronous setting
and error-free links

55

A Detour ... Average Consensus

Average Consensus

® Each node has an input (scalar or vector)

® Average consensus: Output = average of inputs

57

Average Consensus

4"

58

c = a/4+b/4+c/2

Average Consensus

bl

| b=3b/4+c/a

/ -
\ gf a = 3al4+ c/4

59

Average Consensus

B2
—| b= (6/4+1/4)=7/4

<o
¢ = (2/4+6/4+1/2) = 10/4 '\ 6~
— a = (18/4+1/4) = 19/4

of

Average Consensus

As time - oo, values converge to average of inputs

? g

—[b = (6/4+1/4)=7/4
pet
C = (2/4+6/4+1/2) = 10/4 \ 6~
&_[a = (18/4+1/4) = 19/4

L

&

(.Y (3/4 0 1/4 [g (.
0 3/4 1/4 b
J1 L1a w4 12

I
<
>

o S Q
[l

iteration index

b , b =3b/4+ c/4
c / L
C = a/4+b/4+c/2 | /
LA |
\ a =3ald+ c/4

a Lk

after 2 iterations ~ @fter 1 iteration

(4 () ()
b = M|M b =|V|2 b
\ €2 L€ Jo L ¢ o
b [~
A b = 3b/4+ c/4

C LA

c = a/4+b/4+c/2

4 a =3al4+ c/4
LA

7
N

after k iterations

() ()
b = M<| p
\ ¢ JK . ¢)0
b [
| b=23b/4+cl4
C A

c = a/4+b/4+c/2

4 a =3al4+ c/4
Ll

N

after k iterations lteration index

(4 (4 \\

b = MKk | p > x[k] = Mx[0]
\ ¢ JK . ¢ JO
x[k] x[0] PN

. b=23bl/4+cl4

LA

C
c = a/4+b/4+c/2

~

é a =3al4+ c/4
LA

17
N

65

Connected Undirected Graphs

after k iterations

= MK

B Average consensus
if M doubly stochastic

® Matrix elements in [0,1]
®* M; non-zero if link (i,j) exists

® Each row & each column adds to 1

(.Y (374 0 1/4)(g [a)
- 0 3/4 1/4 b

M

>
I
I
<
>

Due to stochastic rows, Due to stochastic columns,
each new state total “mass”
in convex hull (sum of states)
of old states IS preserved

(o (0 (13 13 13 V([a
b | = MK| p > 1/3 1/3 1/3 || b
e o 13 13 173) e
Doubly A
stochastic M b J b = 3b/4+ c/4
c / L
C = a/4+b/4+c/2 /
CL

\ | a=3al4+cl

a Lh

68

Average Consensus

4"

69

Optimization

argmin), f;(x)

70

Distributed Optimization

F0) =) fi)
lterative algorithm

m Each agent maintains an estimate

B |ocal estimates shared with neighbors & updated in
each iteration

m Estimates converge to optimum

71

Example based on |

http://www.ifp.illinois.edu/~angelia/distributed_journal_final.pdf

Change of notation

x|k}

RN

agent identifier lteration index

X [t+1]= %xl [£]+ §x3[t] ~ A, V£ (x,[1])

x [t+1]= %xl [¢]+ %x3 [t]-A, V£ (x,[t])

1 1 1
x,[t+1]= gxl [1]+ gxz[t] + §x3[t] - A V£ (x,[1])

Decentralized Optimization

In the limitas 7> «©
m Consensus: All agents converge to same estimate

m Optimality: Estimates converge to identical point in

argmin,).; f;(x)

76

Why does this work?

2 1
x|t + 1] §x1[t] +§x3[t] — a Vfi(x[t])

1 1 1
xalt+ 1] — zxlt] + 300t + 30t - a VA Gs(ED

x3[t]] f1(xq [t])
x3|t f2(x2[t])
x3(t] fz(xs[t]))

x[t+ 1] «— M x[t] — a; Vf(x[t])

2 1
x|t + 1] §x1[t] +§x3[t] — a. Vfi(xq[t])

1 1 1
X[t + 1] — (] + 5 % [t] + 3x5[E] = @V fs Cese])

|

x[t+ 1] «— M x[t] — a; Vf(x[t])

Doubly
stochastic
M

M here is also doubly stochastic,
but different from
the average consensus example

M identical to that in the
average consensus example
will also suffice

x[t+ 1] «— M x[t] — a; Vf(x[t])

Doubly
stochastic
M

82

x[t+ 1] — M x[t] — a; Vf(x][t])

x[1] <= M x[0] — a, Vf(x[0])

x[t+ 1] — M x[t] — a; Vf(x][t])
x[1] & M x[0] — a Vf(x[0])

x[2] & Mx[1] — a; Vf(x[1])

84

x[t+ 1] — M x[t] — a; Vf(x][t])
x[1] & M x[0] — a Vf(x[0])

x[2] & Mx[1] — a; Vf(x[1])

= M* x[0] — agM Vf(x[0]) — a3 Vf(x[1])

85

x[t+ 1] — M x[t] — a; Vf(x][t])
x[1] & M x[0] — a Vf(x[0])

x[2] &= Mx[1] — a; Vf(x[1])

= M? x[0] — aoM Vf(x[0]) — a; Vf(x[1])

x[3] &= Mx[2] — a; Vf(x[2])

86

x[t+ 1] — M x[t] — a; Vf(x][t])
x[1] & M x[0] — a Vf(x[0])

x[2] &= Mx[1] — a; Vf(x[1])

= M? x[0] — aoM Vf(x[0]) — a; Vf(x[1])

x[3] &= Mx[2] — a; Vf(x[2])

= M3 x[0]
— aoM?Vf(x[0]) — ayMVf(x[1]) — a; Vf(x[2])

x[t+ 1] — M x[t] — a; Vf(x][t])
x[1] & M x[0] — a Vf(x[0])

x[2] &= Mx[1] — a; Vf(x[1])

= M? x[0] — aoM Vf(x[0]) — a; Vf(x[1])

x[3] &= Mx[2] — a; Vf(x[2])

= M? x[0]
— aogM?Vf(x[0]) — ayMVf(x[1]) — a; Vf(x[2])

a; decreasing with time

Claims

m Estimates at different nodes converge = Consensus

® The estimates converges to argmin). f;(x)

89

Part 3

®m Byzantine Fault-Tolerant (Secure)
Optimization & Learning

Another Detour ...

Background

NEIDE
Multi-
Channel
Mesh

capacity

1 logn n loglogn

oan)zchannels
Theory to Capacity

D | |
o)
(®) \‘ Fixed
NoF B
‘ . E "‘
A i (@]
Switchable
° |
(@]
ce [6)

Insights on

Practice bounds

Net-X

protocol design

OS improvements
Software architecture

testbed

Bl Help

Linux box

User Multi-channel
Application protocol
a
—_——d e - - - -
IP Stack
ARP
$ \ 4
Channel Abstraction Module
Interface Interface
Device Driver Device Driver 92

How do you get from

wireless systems to distributed optimization/learning?

Byzantine Average
consensus ™ OO e
+ lossy links

Wireless /l

networks

94

Byzantine Average
consensus ™ We ity ™
+ lossy links

Wireless /l

networks

Average
consensus +
Byzantine faults

95

Optimization +

Byzantine faults

Byzantine Average Average
consensus ™ WENECUCICH ™ consensus +
+ lossy links Byzantine faults

Wireless /l

networks

96

Learning +
Byzantine faults

Optimization +
Byzantine faults

Byzantine Average Average
consensus ™ WENECUCICH ™ consensus +
+ lossy links Byzantine faults

Wireless /l

networks

97

Optimizatio/ Learning +
/ Learning Byzantine faults

Optimization +
Byzantine faults

Byzantine Average Average
consensus ™ WENECUCICH ™ consensus +
+ lossy links Byzantine faults

Wireless /l

networks

98

Hajnal 1958

Distributed
Computing

1980: Pease, Shostak, Lamport

DeGroot 1974

Reaching a consensus

1983: Fischer, Lynch, Paterson

Decentralized
Control Tsitsiklis 1984

Jadbabaei, Lin, Morse 2003

1986: Dolev et al.

Nedich, Ozdaglar 2009

Continue to part 3

Byzantine Fault-Tolerant (Secure)
Optimization & Learning

101

Additional Slides

/

Connected Undirected Graphs

after k iterations

a

b

\

\ ¢

= MK

® Consensus if M row stochastic
® Matrix elements in [0,1]
®* M; non-zero if link (i,j) exists

® Each row adds to 1

(a\ /a\

b = MK| p >
\ ¢) N
Row o

stochastic M b, ‘ b = 3b/4+ c/4

% -
C /

c = al4+bl4+c/2 Q /

\ &
£ ! a = 3ald+ c/4

d

104

a a
Row b =M1 b
stochastic M . ¢ . ¢

Due to stochastic rows,
each new state
iIn convex hull
of old states

Decentralized Optimization over Lossy Links

(.Y (374 0 1/4)(g [a)

b | =| 0 3/4 1/4 b | = M| p
M
b [~
4 b =3b/4+ c/4
C l/ LA
C = a/A+b/4+c/2 ‘* /
CL

\ 4 &
\ 4 a = 3al4+ c/4

107

(L) (a4 (13 13 13) [a
b = M<| p > 1/3 1/3 1/3 b
=y L ¢) 1/3 173 173)\ ¢)
Doubly A
stochastic M b J b =3b/4+ c/4
C / Ll
c = al4+b/4+c/2 | /
LA

\ | a=23al4+cla

a Lh

108

Mass Transfer + Accumulation

®m Each node “transfers mass” to neighbors via messages

B Next state = Total received mass

b [~
™ L.L b=3b/4
C
o2 LL/

\/4 » 'Q
C= a/4+b/4+@ i
~ 4 a=3a/4 @
a Ui

109

Mass Transfer + Accumulation

®m Each node “transfers mass” to neighbors via messages

B Next state = Total received mass

b

o LLf “~3b/4 b =3b/d+ /4

C 4 /
o b/4
C < et
w ,.Q’
¢ = ald+b/4+c/2 % J

o T>3a/4 3 =3a/4+cl4
a L

110

Conservation of Mass

B a+b+c constant after each iteration

b [*
| & L‘ 3b/4
|
C/2< ¢ L A
C = ald+b/4+c/2 w f
- a/4 > 3a/4

b =3b/4+ c/4

a = 3al/4+ c/4

111

Wireless Transmissions Unreliable

b ‘\

e [x
c = al4+b/d+c/2 .

J
- \/4 &
‘ a = 3a/4+ c/4

a L

b = 3b/4+ c}

112

Impact of Unreliability

Y (34 0 1/4) (4

b | = 0 3/4C0D]|| »

14 14 12)| e

c = a/4+b/4+c/2

‘ a =3al4+ c/4

113

Consa(ation of Mass

Yo (34 0 1/4) (4

b | = 0 3/4C0D|| b

14 14 172)| ¢

c = a/4+b/4+c/2

‘ a =3al4+ c/4

114

Average consensus over lossy links ?

115

Potential Solution?

Assume that

transmitter KNOWS

when a message is not delivered

116

Potential Solution?

When mass not transferred to neighbor,

keep it to yourself

117

Convergence ... if nodes intermittently connected

(2 (374 0 1/4 \(4

c = al4+b/4+c/2+c/4 -

‘ a =3al4+ c/4
c/4 a Li

118

Sy T —

All models are wrong,
somAgvmodels are useful.
{ s e -- George Box

JWT CUTE

I

119

Loss Model

Assume that

transmitter KIMVS

when a message is not delivered

120

Better Model ?

No common knowledge regarding message delivery

121

Solution

® [ntroduce memory

122

Solution Sketch

C [‘\.
..

R
\\A ['*\\
€ A
'S
B S = mass C wanted to ® R =mass A has
transfer to node A received from
in total so far node C

in total so far

123

Solution Sketch

B Node C transmits quantity S
message may be lost

® When it is received,
node A accumulates (S-R)

124

What Does That Do ?

125

What Does That Do ?

B |[mplements virtual buffers

126

Dynamic Topology

B When C->B transmission unreliable,
mass transferred to buffer (d)

md=d+c/ r

127

Dynamic Topology

B When C->B transmission unreliable,
mass transferred to buffer (d)

md=d+c/d e
No loss
of mass
even with
message loss

128

Dynamic Topology

® When C—>B transmission reliable,
mass transferred to b

m b=23b/4+cl4+d e

No loss
of mass
even with
message loss

129

Does This Work ?

130

0.87

—= 0.6

0.4r

0.2

Does This Work ?

15

20

131

Time-Varying Column Stochastic Matrix

®m Mass is conserved

® Time-varying network

=» Matrix varies over iterations

Matrix M, for i-th iteration
132

State Transitions

UL O &9

B X = state vector =

QN

~

m x[0] = initial state vector

m x[t] = iteration t
133

State Transitions

m x[1] = M, x[0]

B x[2] = M, x[1] = M> M, x[0]

B x[t] = M, M, ... M, M, x[O]

134

State Transitions

m x[t] =M, M, ... M, M, x[0]

(W

Matrix product converges to 2
column stochastic matrix with identical columns %ffé”"f‘?ﬁ

@,
()
\III)

After K iterations

State Transition

,

K+1

State Transition

\
After K iterations I I I
J

R A QLo S

K+1 Mk+1

\
III)
()
\Il‘l\ll)

R e o S

z ¥ sum

I N SN

State Transitions

m After k iterations, state of first node has the form
z(K) * sum of inputs

where z(k) changes each iteration (k)

® Does not converge to average

138

Solution

® Run two iterations in parallel
® First : original inputs

® Second : input = 1

139

Solution

® Run two iterations in parallel
® First : original inputs
® Second : input = 1

m After Kk iterations ...

first algorithm: z(k) * sum of inputs
second algorithm: z(k) * number of nodes

Solution
® Run two iterations in parallel
® First : original inputs
® Second : input = 1

m After Kk iterations ...

first algorithm: z(k) * sum of inputs

second algorithm: z(k) * number of nodes

ratio = average

081
).67
04r

0.2
0

numerator denominator
1.5
1_
2.5t
. . 0 | .
time 15 20 0 5 tlme 15
ratio
3 .
% 15 20 142

time

